[1]王宇昊,何彧,王铸. 基于深度学习的文本到图像生成方法综述[J]. 计算机工程与应用,2022,58(10):50-67.
[2]吴桥. 平面广告设计中计算机图形图像的应用[J]. 工业设计,2017(8):115-116.
[3]强斌. 浅谈图像学在视频编辑软件中的应用[J]. 江苏科技信息,2015(25):41-42.
[4]DENG M Y,YANG W,CHEN C,et al. Exploring associations between streetscape factors and crime behaviors using Google street view images[J]. Frontiers of computer science,2022,16(4):164316.
[5]叶宇,仲腾,钟秀明. 城市尺度下的建筑色彩定量化测度:基于街景数据与机器学习的人本视角分析[J]. 住宅科技,2019,39(5):7-12.
[6]LARKIN A,GU X,CHEN L Z,et al. Predicting perceptions of the built environment using GIS,satellite and street view image approaches[J]. Landscape and urban planning,2021,216:104257.
[7]KANG Y,CHO N,YOON J,et al. Transfer learning of a deep learning model for exploring tourists' urban image using geotagged photos[J]. ISPRS international journal of geo-information,2021,10(3):137.
[8]KOYLU C,ZHAO C,SHAO W. Deep neural networks and kernel density estimation for detecting human activity patterns from geo-tagged images:a case study of birdwatching on Flickr[J]. ISPRS international journal of geo-information,2019,8(1):45.
[9]袁静文,武辰,杜博,等. 高分五号高光谱遥感影像的城市土地利用景观格局分析[J]. 遥感学报,2020,24(4):465-478.
[10]陈嘉浩,邢汉发,陈相龙. 融合级联CRFs和U-Net深度学习模型的遥感影像建筑物自动提取[J]. 华南师范大学学报(自然科学版),2022,54(1):70-78.
[11]张凌峰. 基于深度学习的激光点云环境感知[D]. 北京:北方工业大学,2021.
[12]索传哲. 基于深度学习的大场景激光点云环境识别研究[D]. 南京:东南大学,2021.
[13]吴韶集,胡一可. 基于深度学习的公共空间人群行为可视化研究:以天津大学卫津路校区为例[J]. 风景园林,2022,29(2):106-111.
[14]YANG H Q,ZHANG X M,LI Z H,et al. Region-level traffic prediction based on temporal multi-spatial dependence graph convolutional network from GPS data[J]. Remote sensing,2022,14(2):303.
[15]YI S,LI H S,WANG X G. Pedestrian behavior understanding and prediction with deep neural networks[J]. European conference on computer vision,2016,9905:263-279.
[16]张帆,刘瑜.街景影像:基于人工智能的方法与应用[J]. 遥感学报,2021,25(5):1043-1054.
[17]KIM S B,KIM D Y,WISE K. The effect of searching and surfing on recognition of destination images on Facebook pages[J]. Computers in human behavior,2014,30:813-823.
[18]CAI G C,LEE K,LEE I. Itinerary recommender system with semantic trajectory pattern mining from geo-tagged photos[J]. Expert systems with applications,2018,94:32-40.
[19]赵晶,曹易. 风景园林研究中的人工智能方法综述[J]. 中国园林,2020,36(5):82-87.
[20]KIM E S,YUN S H,PARK C Y,et al. Estimation of mean radiant temperature in urban canyons using Google street view:a case study on Seoul[J]. Remote sensing,2022,14(2):260.
[21]YE N Q,WANG B W,KITA M,et al. Urban commerce distribution analysis based on street view and deep learning[J]. IEEE access,2019,7:162841-162849.
[22]MIDDEL A,LUKASCZYK J,ZAKRZEWSKI S,et al. Urban form and composition of street canyons:a human-centric big data and deep learning approach[J]. Landscape and urban planning,2019,183:122-132.
[23]ZHONG T,YE C,WANG Z,et al. City-scale mapping of urban facade color using street-view imagery[J]. Remote sensing,2021,13(8):1591.
[24]邓宁,刘耀芳,牛宇,等. 不同来源地旅游者对北京目的地形象感知差异:基于深度学习的Flickr图片分析[J]. 资源科学,2019,41(3):416-429.
[25]ZHANG K,CHEN Y,LI C L. Discovering the tourists' behaviors and perceptions in a tourism destination by analyzing photos' visual content with a computer deep learning model:the case of Beijing[J]. Tourism management,2019,75:595-608.
[26]李亚飞,董红斌. 基于卷积神经网络的遥感图像分类研究[J]. 智能系统学报,2018,13(4):550-556.
[27]CHENG G,XIE X X,HAN J W,et al. Remote sensing image scene classification meets deep learning:challenges,methods,benchmarks,and opportunities[J]. IEEE journal of selected topics in applied earth observations and remote sensing,2020,13:3735-3756.
[28]张铭飞,高国伟,胡敬芳,等. 基于卷积神经网络的遥感图像水体提取[J]. 传感器与微系统2022,41(1):72-74.
[29]XU K J,HUANG H,DENG P F,et al. Two-stream feature aggregation deep neural network for scene classification of remote sensing images[J]. Information sciences,2020,539:250-268.
[30]TOMBE R,VIRIRI S. Adaptive deep co-occurrence feature learning based on classifier-fusion for remote sensing scene classification[J]. IEEE journal of selected topics in applied earth observations and remote sensing,2020,14:155-164.
[31]范鑫,胡昌苗,霍连志. 耦合多源地理数据的多分辨率遥感影像场景分类方法研究[J]. 无线电工程,2021,51(12):1449-1460.
[32]QI C R,SU H,MO K C,et al. PointNet:deep learning on point sets for 3D classification and segmentation[C]//Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition. Honolulu,USA:IEEE,2017:77-85.
[33]HAN X,DONG Z,YANG B S. A point-based deep learning network for semantic segmentation of MLS point clouds[J]. ISPRS journal of photogrammetry and remote sensing,2021,175:199-214.
[34]HU R Z,HUANG Z Y,TANG Y H,et al. Graph2Plan:learning floorplan generation from layout graphs[J]. ACM transactions on graphics,2020,39(4):118.
[35]苏奇. 基于深度学习的地形生成方法研究[D]. 西安:西安电子科技大学,2020.
[36]孙澄,丛欣宇,韩昀松. 基于 CGAN 的居住区强排方案生成设计方法[J]. 哈尔滨工业大学学报,2021,53(2):111-121.
[37]林文强. 基于深度学习的小学校园设计布局自动生成研究[D]. 广州:华南理工大学,2020.
[38]YE Y,ZHUANG Y,ZHANG L,et al. Designing urban spatial vitality from morphological perspective:a study based on quantified urban morphology and activities' testing[J]. International urban plan,2016,31:26-33.
[39]KIM Y L. Seoul's Wi-Fi hotspots:Wi-Fi access points as an indicator of urban vitality[J]. Computers,environment and urban systems,2018,72:13-24.
[40]OOSTERLINCK D,BENOIT D F,BAECKE P,et al. Bluetooth tracking of humans in an indoor environment:an application to shopping mall visits[J]. Applied geography,2017,78:55-65.
[41]GUO D Y,WANG J,CUI Y,et al. SiamCAR:siamese fully convolutional classification and regression for visual tracking[C]//Proceedings of 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle,USA:IEEE,2020:6268-6276.
[42]WANG Q,ZHANG L,BERTINETTO L,et al. Fast online object tracking and segmentation:a unifying approach[C]//Proceedings of 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Long Beach,USA:IEEE,2019:1328-1338.
[43]李瀚,刘坤华,刘嘉杰,等. 实时视觉目标跟踪与视频对象分割多任务框架[J]. 中国图象图形学报,2021,26(1):101-112.
[44]赛斌,曹自强,谭跃进,等. 基于目标跟踪与轨迹聚类的行人移动数据挖掘方法研究[J]. 系统工程理论与实践,2021,41(1):231-239.
[45]AITHAL B H,DAS S K,SUBRAHMANYA P P. Urban 3D structure reconstruction through a generative adversarial network model[J]. Arabian journal for science and engineering,2020,45(12):10731-10741.
[46]KIM S,KIM D,CHOI S,et al. CityCraft:3D virtual city creation from a single image[J]. Visual computer,2020,36(5):911-924.
[47]黄骞,史洪芳,于洪斌. 基于实景三维的美丽乡村智能规划协同平台[J]. 公路,2019,64(4):233-238.
[48]ESLAMI S M A,REZENDE D J,BESSE F,et al. Neural scene representation and rendering[J]. Science,2018,360(6394):1204-1210.
[49]KINGMA D P,WELLING M. Auto-encoding variational bayes[DB/OL].[2019-07-02]. https://doi.org/10.48550/arXiv.1312.6114.
[50]GOODFELLOW I J,POUGET-ABADIE J,MIRZA M,et al. Generative adversarial nets[C]//Proceedings of the 27th International Conference on Neural Information Processing Systems.Montreal,Canada:MIT Press,2014:2672-2680.
[51]吴劲,陈树沛,杨庆,等. 基于图神经网络的用户轨迹分类[J]. 电子科技大学学报,2021,50(5):734-740.
[52]朱光辉,王喜文. ChatGPT的运行模式、关键技术及未来图景[J]. 新疆师范大学学报(哲学社会科学版),2023,44(4):113-122.
[53]王德祥,王建波. 新一代人工智能对数字经济的影响:以ChatGPT为例[J]. 特区实践与理论,2023(2):34-39.
[54]荆林波,杨征宇. 聊天机器人(ChatGPT)的溯源及展望[J]. 财经智库,2023,8(1):5-36.
[55]冯志伟,张灯柯,饶高琦. 从图灵测试到ChatGPT:人机对话的里程碑及启示[J]. 语言战略研究,2023,8(2):20-24.
[56]WU T Y,HE S Z,LIU J P,et al. A brief overview of ChatGPT:the history,status quo and potential future development[J]. IEEE/CAA journal of automatica sinica,2023,10(5):1122-1136.