[1]EINFALT M,LIENHART R. Decoupling video and human motion:towards practical event detection in athlete recordings[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops. Virtual,2020:892-893.
[2]GIRSHICK R,DONAHUE J,DARRELL T,et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Columbus,Ohio,USA,2014:580-587.
[3]REN S,HE K,GIRSHICK R,et al. Faster r-cnn:Towards real-time object detection with region proposal networks[J]. IEEE transactions on pattern analysis and machine intelligence,2017,39(6):1137-1149.
[4]REDMON J,DIVVALA S,GIRSHICK R,et al. You only look once:Unified,real-time object detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas,USA,2016:779-788.
[5]LIU W,ANGUELOV D,ERHAN D,et al. Ssd:Single shot multibox detector[C]//European Conference on Computer Vision. Springer,Cham,Amsterdam,Netherlands,2016:21-37.
[6]TIAN Z,SHEN C,CHEN H,et al. Fcos:Fully convolutional one-stage object detection[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision. Seoul,Korea(South),2019:9627-9636.
[7]TAN M,PANG R,LE Q V. Efficientdet:Scalable and efficient object detection[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Virtual,2020:10781-10790.
[8]YANG Z,LI Z,JIANG X,et al. Focal and global knowledge distillation for detectors[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. New Orleans,LA,USA,2022:4643-4652.
[9]GAO Z,WANG L,HAN B,et al. AdaMixer:A Fast-Converging Query-Based Object Detector[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. New Orleans,LA,USA,2022:5364-5373.
[10]HE K,ZHANG X,REN S,et al. Deep residual learning for image recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Las,Vegas,USA,2016:770-778.
[11]SIMONYAN K,ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[J/OL]. arXiv Preprint arXiv:1409.1556,2014.
[12]SZEGEDY C,IOFFE S,VANHOUCKE V,et al. Inception-v4,inception-resnet and the impact of residual connections on learning[C]//Thirty-first AAAI Conference on Artificial Intelligence. San Francisco,USA,2017:4278-4284.
[13]LIN T Y,DOLL?R P,GIRSHICK R,et al. Feature pyramid networks for object detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. San,Juan,USA,2017:2117-2125.
[14]LIU S,QI L,QIN H,et al. Path aggregation network for instance segmentation[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Salt Lake City,USA,2018:8759-8768.
[15]ZHANG S,CHI C,YAO Y,et al. Bridging the gap between anchor-based and anchor-free detection via adaptive training sample selection[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2020:9759-9768.
[16]ZHANG X,ZHOU X,LIN M,et al. Shufflenet:An extremely efficient convolutional neural network for mobile devices[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Salt Lake City,USA,2018:6848-6856.
[17]WOO S,PARK J,LEE J Y,et al. Cbam:Convolutional block attention module[C]//Proceedings of the European Conference on Computer Vision(ECCV). Munich,Germany,2018:3-19.
[18]LI X,WANG W,WU L,et al. Generalized focal loss:Learning qualified and distributed bounding boxes for dense object detection[J]. Advances in neural information processing systems,2020,33:21002-21012.
[19]HU J,SHEN L,SUN G. Squeeze-and-excitation networks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Salt Lake City,USA,2018:7132-7141.
[20]REZATOFIGHI H,TSOI N,GWAK J Y,et al. Generalized intersection over union:A metric and a loss for bounding box regression[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Long Beach,USA,2019:658-666.
[21]刘方坚,李媛. 基于视觉显著性的 SAR 遥感图像 NanoDet 舰船检测方法[J]. 雷达学报,2021,10(6):885-894.