[1]LI H,MA Y,MA Z,et al. Weibo text sentiment analysis based on bert and deep learning[J]. Applied sciences,2021,11(22):10774.
[2]LI Y,LI N. Sentiment analysis of Weibo comments based on graph neural network[J]. IEEE access,2022,10:23497-23510.
[3]YANG X,XU S,WU H,et al. Sentiment analysis of Weibo comment texts based on extended vocabulary and convolutional neural network[J]. Procedia computer science,2019,147:361-368.
[4]王珊,黄海燕,乔伟涛. 基于Reformer模型的文本情感分析[J]. 计算机工程与设计,2022,43(4):1089-1095.
[5]JIA W,PENG J. The public sentiment analysis of double reduction policy on weibo platform[J]. Computational intelligence and neuroscience,2022,2022(1):3212681.
[6]SADR H,PEDRAM M M,TESHNEHLAB M. Convolutional neural network equipped with attention mechanism and transfer learning for enhancing performance of sentiment analysis[J]. Journal of AI and data mining,2021,9(2):141-151.
[7]BASIRI M E,NEMATI S,ABDAR M,et al. A novel fusion-based deep learning model for sentiment analysis of COVID-19 tweets[J]. Knowledge-based systems,2021,228:107242.
[8]ANTONAKAKI D,FRAGOPOULOU P,IOANNIDIS S. A survey of Twitter research:Data model,graph structure,sentiment analysis and attacks[J]. Expert systems with applications,2021,164:114006.
[9]CHINY M,CHIHAB M,BENCHAREF O,et al. LSTM,VADER and TF-IDF based hybrid sentiment analysis model[J]. International journal of advanced computer science and applications,2021,12(7):11-22.
[10]李全鑫,庞俊,朱峰冉. 结合Bert与超图卷积网络的文本分类模型[J]. 计算机工程与应用,2023,59(17):107-115.
[11]DANG N C,MORENO-GARCÍA,MARÍA N,et al. Sentiment analysis based on deep learning:a comparative study[J]. Electronics,2020,9(3):483.
[12]李文彬,许雁玲,钟志楷,等. 基于稳定学习的图神经网络模型[J]. 湖南理工学院学报(自然科学版),2023,36(4):16-18.
[13]魏苏波,张顺香,朱广丽,等. 基于正交投影的BiLSTM-CNN情感特征抽取方法[J]. 南京师大学报(自然科学版),2023,46(1):139-148.
[14]李青,王一晨,杜承烈. 图表示学习方法研究综述[J]. 计算机应用研究,2023,40(6):1601-1613.
[15]邹然,柳杨,李聪,等. 图表示学习综述[J]. 北京师范大学学报(自然科学版),2023,59(5):716-724.
[16]陈豪伶,虞慧群,范贵生,等. 基于分层表示和上下文增强的类摘要生成技术[J]. 计算机研究与发展,2024,61(2):307-323.
[17]BASIRI M E,NEMATI S,ABDAR M,et al. ABCDM:An attention-based bidirectional CNN-RNN deep model for sentiment analysis[J]. Future generation computer systems,2021,115:279-294.
[18]JIAWA Z,WEI L,SILI W,et al. Review of methods and applications of text sentiment analysis[J]. Data analysis and knowledge discovery,2021,5(6):1-13.
[19]SINGLA C,AL-WESABI F N,PATHANIA Y S,et al. An optimized deep learning model for emotion classification in tweets[J]. Computers,materials & continua,2022,70(3):118-131.