|Table of Contents|

Cross-project Software Defect Prediction Based on Federated Transfer(PDF)

《南京师大学报(自然科学版)》[ISSN:1001-4616/CN:32-1239/N]

Issue:
2024年03期
Page:
122-128
Research Field:
计算机科学与技术
Publishing date:

Info

Title:
Cross-project Software Defect Prediction Based on Federated Transfer
Author(s):
Song Huiling12Li Yong123Zhang Wenjing12
(1.College of Computer Science and Technology,Xinjiang Normal University,Urumqi 830054,China)
(2.Software Development Department,Xinjiang Electronic Research Institute,Urumqi 830010,China)
(3.Key Laboratory of Ministry of Industry and Information Technology for Safety-critical Software Development and Verification,Nanjing University of Aeronautics and Astronautics,Nanjing 211106,China)
Keywords:
software defect predictionfederated learningtransfer learningdifferential privacyconvolutional neural network
PACS:
TP181; TP311.5
DOI:
10.3969/j.issn.1001-4616.2024.03.015
Abstract:
Cross-project software defect prediction is based on labeled multi-source project data to build a model,which can address the problem of insufficient software historical data and high labeling cost. However,in traditional cross-project defect prediction,the problem of “data-island” caused by source project data holders to protect the business privacy of software data directly affects the model performance of cross-project prediction. Therefore,in this paper,we propose a cross-project software defect prediction method based on federated transfer(FT-CPDP). Firstly,to address the problem of data privacy leaking and feature heterogeneity between projects,this paper presents a model algorithm based on the combination of federal learning and migratory learning to break down the “data barrier” among data holders,and to achieve cross-project defect prediction model in the privacy protection scenario. Secondly,in the federal communication process,the level of privacy protection is increased by adding noise that satisfies the privacy budget. Finally,a convolution neural network model is built to realize software defect prediction. Experiments based on NASA software defect prediction dataset show that compared with traditional cross-project defect prediction methods,FT-CPDP method achieves better comprehensive performance on the premise of software data privacy protection.

References:

[1]李勇,黄志球,房丙午,等. 代价敏感分类的软件缺陷预测方法[J]. 计算机科学与探索,2014,8(12):1442-1451.
[2]李勇,黄志球,王勇,等. 数据驱动的软件缺陷预测研究综述[J]. 电子学报,2017,45(4):982-988.
[3]刘文英,林亚林,李克文,等. 一种软件缺陷不平衡数据分类新方法[J]. 山东科技大学学报(自然科学版),2021,40(2):84-94.
[4]曲豫宾,陈翔,李龙,等. 可缓解类重叠问题的跨版本软件缺陷预测方法[J]. 吉林大学学报(理学版),2021,59(2):372-378.
[5]盖金晶,郑尚,于化龙,等. 一种跨项目缺陷预测的源项目训练数据选择方法[J]. 南京师大学报(自然科学版),2022,45(1):110-117.
[6]倪超,陈翔,刘望舒,等. 基于特征迁移和实例迁移的跨项目缺陷预测方法[J]. 软件学报,2019,30(5):1308-1329.
[7]李勇,黄志球,王勇,等. 基于多源数据的跨项目软件缺陷预测[J]. 吉林大学学报(工学版),2016,46(6):2034-2041.
[8]CHEN X,ZHANG D,CUI Z Q,et al. DP-share:privacy-preserving software defect prediction model sharing through differential privacy[J]. Journal of computer science and technology,2019,34(5):1020-1038.
[9]CHEN Y,QIN X,WANG J,et al. FedHealth:a federated transfer learning framework for wearable healthcare[J]. IEEE intelligent systems,2020,35(4):83-93.
[10]CHEN Y,LU W,WANG J,et al. Federated learning with adaptive batchnorm for personalized healthcare[J/OL]. arXiv Preprint arXiv:2112.00734,2021.
[11]ZHANG W,LI X. Federated transfer learning for intelligent fault diagnostics using deep adversarial networks with data privacy[J]. IEEE/ASME transactions on mechatronics,2022,27(1):430-439.
[12]WANG A,ZHANG Y,YAN Y,et al. Heterogeneous defect prediction based on federated transfer learning via knowledge distillation[J]. IEEE access,2021,9:29530-29540.
[13]SHARMA S,CHAOPING X,LIU Y,et al. Secure and efficient federated transfer learning[C]//2019 IEEE International Conference on Big Data. New York:IEEE,2019.
[14]JU C,GAO D,MARE R,et al. Federated transfer learning for EEG signal classification[C]//IEEE Engineering in Medicine and Biology Society Conference Proceedings. Motreal,Canada:IEEE,2020.
[15]孔秀平,陆林. 隐私保护下的车辆轨迹联邦嵌入学习与聚类[J]. 南京师范大学学报(工程技术版),2022,22(2):80-86.
[16]TANG S,HUANG S,ZHENG C,et al. A novel cross-project software defect prediction algorithm based on transfer learning[J]. Tsinghua science and technology,2022,27(1):41-57.
[17]WU X,ZHANG Y,SHI M,et al. An adaptive federated learning scheme with differential privacy preserving[J]. Future generation computer systems,2022,127:362-372.
[18]叶青青,孟小峰,朱敏杰,等. 本地化差分隐私研究综述[J]. 软件学报,2018,29(7):25.
[19]GF A,RS B. On the behavioral implications of differential privacy[J]. Theoretical computer science,2020,841:84-93.
[20]LI H,HYB C,LANG L,et al. MHAT:an efficient model-heterogenous aggregation training scheme for federated learning[J]. Information sciences,2021.
[21]LI T,SAHU A K,TALWALKAR A,et al. Federated learning:challenges,methods,and future directions[J]. IEEE Signal processing magazine,2020,37(3):50-60.
[22]ZHANG W,LI X,MA H,et al. Federated learning for machinery fault diagnosis with dynamic validation and self-supervision[J]. Knowledge-based systems,2021,213(1):106679.
[23]张泽辉,富瑶,高铁杠. 支持数据隐私保护的联邦深度神经网络模型研究[J]. 自动化学报,2022,48(5):1273-1284.
[24]杨庚,王周生. 联邦学习中的隐私保护研究进展[J]. 南京邮电大学学报(自然科学版),2020,40(5):204-214.
[25]RODRIGUEZ D,HERRAIZ I,HARRISON R. On software engineering repositories and their open problems[C]//First International Workshop on Realizing Artificial Intelligence Synergies in Software Engineering(RAISE'12). New York:IEEE,2012.
[26]FANG H,QIAN Q,CHEN M L,et al. Privacy preserving machine learning with homomorphic encryption and federated learning[J]. Future internet,2021,13.
[27]贾峰,李世豪,沈建军,等. 采用深度迁移学习与自适应加权的滚动轴承故障诊断[J]. 西安交通大学学报,2022,56(8):1-10.
[28]MG A,KE P A,YU X A,et al. Preserving differential privacy in deep neural networks with relevance-based adaptive noise imposition-ScienceDirect[J]. Neural networks,2020,125:131-141.

Memo

Memo:
-
Last Update: 2024-09-15