[1]COX D. Regression models and life tables[J]. Journal of the Royal Statistical Society series b:statistical methodology,1972,34(2):187-220.
[2]KAPLAN E L,MEIER P. Nonparametric estimation from in-complete observations[J]. Journal of the American Statal Association,1957,53(282):457-481.
[3]AARON S D,STEPHENSON A L,CAMERON D W,et al. A statistical model to predict one-year risk of death in patients with cystic fibrosis[J]. Journal of clinical epidemiology,2015,68(11):1336-1345.
[4]FARAGGI D,SIMON R. A neural network model for survival data[J]. Statistics in Medicine,2010,14(1):73-82.
[5]ISHWARAN H,KOGALUR U B,BLACKSTONE EUGENE H,et al. Random survival forests[J]. Journal of Thoracic Oncology Official Publication of the International Association for the Study of Lung Cancer,2008,2(12):841-860.
[6]ISHWARAN H,KOGALUR U B,BLACKSTONE EUGENE H,et al. Random survival forests for R[J]. Annals of applied statistics,2007,2(3):25-31.
[7]LUCK M,SYLVAIN T,CARDINAL H,et al. Deep learning for patient-specific kidney graft survival analysis[J/OL]. arXiv Preprint arXiv:1705.10245,2017.
[8]ALAA A M,van der SCHAAR M. Deep multi-task Gaussian processes for survival analysis with competing risks[C]//31st Annual Conference on Newral Information Processing System. Long Beach,CA:NIPS,2017,30:2326-2334.
[9]CHANG LEE,WILLIAM R ZAME,JINSUNG YOON,et al. DeepHit:a deep learning approach to survival analysis with competing risks[C]//The Thirty-Second AAAI Conference on Artificial Intelligence. New Orleans,LA:AAAI,2018:2314-2321.
[10]PLSTERL S,NAVAB N,KATOUZIAN A. Fast training of support vector machines for survival analysis[C]//Machine Learning and Knowledge Discovery in Databases:European Conference,ECML PKDD. Switzerland:Springer,2015:243-259.
[11]PLSTERL S,NAVAB N,KATOUZIAN A. An efficient training algorithm for kernel survival support vector machines[J/OL]. arXiv Preprint arXiv:1611.07054,2016.
[12]PLSTERL S,GUPTA P,WANG L,et al. Heterogeneous ensembles for predicting survival of metastatic,castrate-resistant prostate cancer patients[J]. F1000research,2016,5(2676):1-29.
[13]KATZMAN J,SHAHAM U,BATES J,et al. Deep Survival:a deep cox proportional hazards network[J/OL]. arXiv Preprint arXiv:1606.00931,2016.
[14]LIU P,FU B,YANG S X,et al. Optimizing survival analysis of XGBoost for ties to predict disease progression of breast cancer[J]. IEEE transactions on biomedical engineering,2020,68(1):148-160.
[15]KATZMAN J L,SHAHAM U,CLONINGER A,et al. DeepSurv:personalized treatment recommender system using a Cox proportional hazards deep neural network[J]. BMC medical research methodology,2018,18(1):24.
[16]LIM H J,ZHANG X,DYCK R,et al. Methods of competing risks analysis of end-stage renal disease and mortality among people with diabetes[J]. BMC medical research methodology,2010,10(97):1-9.
[17]LAMBERT P C,DICKMAN P W,NELSON C P,et al. Estimating the crude probability of death due to cancer and other causes using relative survival models[J]. Statistics in medicine,2010,29(7/8):885-895.
[18]BELLOT A,SCHAAR M. Tree-based bayesian mixture model for competing risks[C]//21st International Conference on Arttfical Intelligence and Statistics Lanzarote,Spain:Microcome Publishing,2018:910-918.
[19]REN K,QIN J,ZHENG L,et al. Deep recurrent survival analysis[J]. Proceedings of the AAAI conference on artificial intelligence,2019,33:4798-4805.
[20]LIU P,FU B,YANG S X. HitBoost:survival analysis via a multi-output gradient boosting decision tree method[J]. IEEE Access,2019,7:56785-56795.
[21]RIETSCHEL C,YOON J,MIHAELA V. Feature selection for survival analysis with competing risks using deep learning[J/OL]. arXiv Preprint arXiv:1811.09317,2018.
[22]LEE C,YOON J,SCHAAR M. Dynamic-DeepHit:a deep learning approach for dynamic survival analysis with competing risks based on longitudinal data[J]. IEEE transactions on biomedical engineering,2020,67(1):122-133.
[23]COLLOBERT R,WESTON J. A unified architecture for natural language processing:deep neural networks with multitask learning[C]//Machine Learning,Proceedings of the Twenty-Fifth International Conference(ICML 2008),Helsinki,Finland:ACM,2008:160-167.
[24]HE K,ZHANG X,REN S,et al. Deep residual learning for image recognition[C]//IEEE Conference on Computer Vision & Pattern Recognition. IEEE Computer Society,Piscataway,NJ:IEEE,2016:770-778.
[25]HARRELL,FRANK E. Evaluating the yield of medical tests[J]. The journal of the American Medical Association,1982,247(18):2543-2546.
[26]ANTOLINI L,BORACCHI P,BIGANZOLI E. A time-dependent dis-crimination index for survival data[J]. Statistics in medicine,2005,24(24):3927-3944.
[27]KVAMME H,BORGAN R,SCHEEL I. Time-to-event prediction with neural networks and cox regression[J]. Journal of machine learning research,2019,20(129):1-30.
[28]KVAMME H,BORGAN R. Continuous and discrete-time survival prediction with neural networks[J/OL]. arXiv Preprint arXiv:1910.06724,2019.