|Table of Contents|

Research of Stock Quantitative Trading Algorithm Based on Deep Reinforcement Learning(PDF)

《南京师大学报(自然科学版)》[ISSN:1001-4616/CN:32-1239/N]

Issue:
2025年01期
Page:
85-92
Research Field:
计算机科学与技术
Publishing date:

Info

Title:
Research of Stock Quantitative Trading Algorithm Based on Deep Reinforcement Learning
Author(s):
Song Fei12Tian Chenlei2Feng Chuanwei3
(1.School of Information Management,Nanjing University,Nanjing 210023,China)
(2.College of Science,Nanjing Forestry University,Nanjing 210037,China)
(3.School of Mathematics,Nanjing University,Nanjing 210093,China)
Keywords:
quantitative investmentDQNreinforcement learningalgorithmic trading
PACS:
TP18
DOI:
10.3969/j.issn.1001-4616.2025.01.011
Abstract:
This paper focuses on quantitative stock investment and applies the Deep Q-learning(DQN)model from deep reinforcement learning to algorithmic trading,constructing an end-to-end algorithmic trading system. Firstly,the system utilizes stock technology analysis index to design a stock trading environment,expanding the feature set from a time scale; secondly,it defines the reward function and action space for intelligent agent transactions; then,it designs Q-network structure and incorporate Support Vector Machine and eXtreme Gradient Boosting method to learn the rise and fall signals of stock historical data into reinforcement learning; finally,the algorithmic trading system is applied to the Chinese stock market and China Merchants Bank and Taihe Technology,as well as the remaining four stocks are selected for validation. The investment performance is evaluated from three aspects:return rate,sharpe ratio,and maximum drawdown rate. The results are shown that the algorithmic system significantly improved the return rate while reducing the maximum drawdown rate,indicating that the model has a high risk resistance ability.

References:

[1]姜宇薇. 金融市场量化交易的国际经验[J]. 中国货币市场,2022,246(4):22-25.
[2]张晓燕,张远远. 量化投资在中国的发展及影响分析[J]. 清华金融评论,2022(1):44-45.
[3]梁天新,杨小平,王良,等. 基于强化学习的金融交易系统研究与发展[J]. 软件学报,2019,30(3):20.
[4]JIANG Z,XU D,LIANG J. A deep reinforcement learning framework for the financial portfolio management problem[J/OL]. arXiv Preprint arXiv:1706.10059,2017.
[5]XIONG Z,LIU X Y,SHAN Z,et al. Practical deep reinforcement learning approach for stock trading[J/OL]. arXiv Preprint arXiv:1811.07522,2018.
[6]韩道岐,张钧垚,周玉航,等. 基于深度强化学习的股市操盘手模型研究[J]. 计算机工程与应用,2020,56(21):145-153.
[7]AZHIKODAN A R,BHAT A,JADHAV M V. Stock trading bot using deep reinforcement learning[M]. Singapore:Innovations in Computer Science and Engineering,2019:41-49.
[8]HUANG Z,LIN N,MEI W L,et al. Algorithmic trading using combinational rule vector and deep reinforcement learning[J]. Applied soft computing,2023,147:110802.
[9]MAHDI M,MAHOOTCHI M. A deep Q-learning based algorithmic trading system for commodity futures markets[J]. Expert systems with applications,2024,237:121711.
[10]TRELEAVEN P,GALAS M,LALCHAND V. Algorithmic trading review[J]. Communications of the ACM,2013,56(11):76-85.
[11]MNIH V,KAVUKCUOGLU K,SILVER D,et al. Playing atari with deep reinforcement learning[EB/OL](2013-12-19)[2023-01-08].
[12]BANOTHS P R,DONTA P K,AMGOTH T. Dynamic mobile charger scheduling with partial charging strategy for WSNs using deep-Q-networks[J]. Neural computing and applications,2021,33(22):15267-15279.
[13]石泽宇. 我国股票市价变动影响因素的实证分析[J]. 北方经贸,2020(9):125-127.
[14]WANG Y,WANG D,ZHANG S,et al. Deep Q-trading[R]. CSLT Technical Report-20160036,2017.
[15]李嘉浩. 基于支持向量机的股票预测与分析[J]. 经济研究导刊,2021(32):107-110.
[16]葛橹漠,周显. 基于XGBoost的多因子选股模型[J]. 信息技术与标准化,2020(5):36-41.

Memo

Memo:
-
Last Update: 2025-02-15