|Table of Contents|

Research on Wheat Question Classification Model Based on Dual-Granularity(PDF)

《南京师大学报(自然科学版)》[ISSN:1001-4616/CN:32-1239/N]

Issue:
2025年01期
Page:
100-108
Research Field:
计算机科学与技术
Publishing date:

Info

Title:
Research on Wheat Question Classification Model Based on Dual-Granularity
Author(s):
Zhao Xinyue1Chen Meifeng1Zhang Jing1Wang Jingru1Song Yunsheng12
(1.School of Information Science and Engineering,Shandong Agricultural University,Taian 271018,China)
(2.Huang Huaihai Key Laboratory of Intelligent Agriculture Technology Ministry of Agriculture and Rural Affairs,Taian 271018,China)
Keywords:
wheat community Q&Amulti-scale CNNattention mechanismquestion classification
PACS:
TP391
DOI:
10.3969/j.issn.1001-4616.2025.01.013
Abstract:
In response to the issues of noise,feature sparsity,and strong agricultural expertise in the question texts of the current wheat Q&A community,a wheat question classification model based on dual-granularity features is proposed. To effectively alleviate the problem of semantic feature sparsity in agricultural questions,a dual-branch architecture is employed,extracting both character-level and word-level features in separate branches. An interactive attention mechanism is introduced to capture the interaction between word-level and character-level features,ensuring the consistency of semantic representation across different granularities. Finally,the model integrates character-level,word-level,and their interactive features to construct a robust classification framework. Additionally,an agricultural dictionary and a stop words list are incorporated at the input layer to enhance word segmentation and character splitting,addressing the challenges of high domain specificity and data noise in wheat community question texts. Compared to six existing mainstream agricultural community question classification models,this model demonstrates superior overall classification performance and improved comprehensive performance across various categories. This research contributes to enhancing the performance of question-and-answer systems in wheat farming communities and actively promotes the advancement of smart agriculture,support rural revitalization efforts.

References:

[1]赵凯. 小麦种植过程中的施肥技术应用要点[J]. 农家参谋,2022(19):34-36.
[2]韩家琪,毛克彪,夏浪,等. 基于空间数据仓库的农业大数据研究[J]. 中国农业科技导报,2016,18(5):17-24.
[3]刘合兵,张德梦,熊蜀峰,等. 融合 ALBERT 与规则的小麦病虫害命名实体识别[J]. 计算机科学与探索,2023,17(6):1395-1404.
[4]ARKIN E,YADIKAR N,XU X,et al. A survey:object detection methods from CNN to transformer[J]. Multimedia tools and applications,2023,82(14):21353-21383.
[5]ZHU J J,JIANG Q S,SHEN Y H,et al. Application of recurrent neural network to mechanical fault diagnosis:a review[J]. Journal of mechanical science and technology,2022,36(2):527-542.
[6]鲍彤,罗瑞,郭婷,等. 基于BERT字向量和TextCNN的农业问句分类模型分析[J]. 南方农业学报,2022,53(7):2068-2076.
[7]王郝日钦,王晓敏,缪祎晟,等. 基于BERT-Attention-DenseBiGRU的农业问答社区问句相似度匹配[J]. 农业机械学报,2022,53(1):244-252.
[8]唐詹,柏召,刁磊,等. 基于注意力池化和堆叠式结构的病虫害文献识别模型[J]. 农业机械学报,2021,52(S1):178-184.
[9]陈鹏,郭小燕. 基于Adaboost与朴素贝叶斯的农业短文本信息分类[J]. 软件,2020,41(9):13-18.
[10]李林,刁磊,唐詹,等. 基于BERT_Stacked LSTM的农业病虫害问句分类方法[J]. 农业机械学报,2021,52(S1):172-177.
[11]金宁,赵春江,吴华瑞,等. 基于BiGRU_MulCNN的农业问答问句分类技术研究[J]. 农业机械学报,2020,51(5):199-206.
[12]杨森淇,段旭良,肖展,等. 基于ERNIE+DPCNN+BiGRU的农业新闻文本分类[J]. 计算机应用,2023,43(5):1461-1466.
[13]ZHANG X W,WU P,CAI J M,et al. A contrastive study of Chinese text segmentation tools in marketing notification texts[C]//Journal of Physics:Conference Series. The United Kingdom:IOP Publishing,2019,1302(2):022010.
[14]CHURCH K W. Word2Vec[J]. Natural language engineering,2017,23(1):155-162.
[15]刘建伟,刘俊文,罗雄麟. 深度学习中注意力机制研究进展[J]. 工程科学学报,2021,43(11):1499-1511.
[16]JOULIN A,GRAVE E,BOJANOWSKI P,et al. Bag of tricks for efficient text classification[J/OL]. arXiv Preprint arXiv:1607.01759,2016.
[17]LIU P,QIU X,HUANG X. Recurrent neural network for text classification with multi-task learning[J/OL]. arXiv Preprint arXiv:1605.05101,2016.
[18]KIM Y. Convolutional neural networks for sentence classification[J/OL]. arXiv Preprint arXiv:1408.5882,2014.
[19]LAI S,XU L,LIU K,et al. Recurrent convolutional neural networks for text classification[C]//Proceedings of the AAAI Conference on Artificial Intelligence. New York:Association Computational Linguistics,2015,29(1):2267-2273.
[20]ZHOU P,SHI W,TIAN J,et al. Attention-based bidirectional long short-term memory networks for relation classification[C]//Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics. Berlin,Germany:Association Computational Linguistics,2016,2:207-212.
[21]VASWANI A,SHAZEER N,PARMAR N,et al. Attention is all you need[J]. Advances in neural information processing systems,2017,30:1-11.
[22]朱郁筱,吕琳媛. 推荐系统评价指标综述[J]. 电子科技大学学报,2012,41(2):163-175.

Memo

Memo:
-
Last Update: 2025-02-15