|Table of Contents|

Fluorescent Probes Based on Rhodamine Spirocyclic Derivatives(PDF)

《南京师大学报(自然科学版)》[ISSN:1001-4616/CN:32-1239/N]

Issue:
2015年02期
Page:
1-
Research Field:
特约稿
Publishing date:

Info

Title:
Fluorescent Probes Based on Rhodamine Spirocyclic Derivatives
Author(s):
Zhang Xiaobing1Gong Yijun2Su Li2Mao Guojiang2
(1.Molecular Science and Biomedicine Laboratory,State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering,Hunan University,Changsha 410082,China) (2.School of Chemistry and Chemical Engineering,Henan Normal University,Xinxiang 453007,China)
Keywords:
rhodaminefluorescent probespirocyclic derivativecoordination-type probereaction-type probe
PACS:
O657.3
DOI:
-
Abstract:
Spirocyclic derivatives of rhodamine dyes have been proven to be useful fluorescence sensing platforms,since the target-triggered ring-opening process of the spirocycle could result in turn-on fluorescence response. In the past ten years,a large number of rhodamine spirocyclic derivative-based fluorescent probes have been developed,with the analytic targets including various metal ions(Cu2+,Hg2+,Fe3+,Zn2+,Cr3+,Ag+,Au+,Pb2+,and Pd2+),anions(OCl-,CN-,and P2O4-7),reactive oxygen/nitrogen species,thiols,pH values,temperatures,etc. This review will introduce the response mechanisms of previously reported rhodamine spirocyclic probes,as well as their bioanalysis applications.

References:

[1] Cho D,Sessler J L. Modern reaction-based indicator systems[J]. Chemical Society Reviews,2009,38:1 647-1 662.
[2]Quang D T,Kim J S. Fluoro- and chromogenic chemodosimeters for heavy metal ion detection in solution and biospecimens[J]. Chemical Reviews,2010,110:6 280-6 301.
[3]Yang Y,Zhao Q,Feng W,et al. Luminescent chemodosimeters for bioimaging[J]. Chemical Reviews,2013,113:192-270.
[4]Chomchai S,Thawatchai T. Chromogenic anion sensors[J]. Chemical Society Reviews,2003,32:192-202.
[5]Kim H N,Guo Z,Zhu W,et al. Recent progress on polymer-based fluorescent and colorimetric chemosensors[J]. Chemical Society Reviews,2011,40:79-93.
[6]Chen X,Pradhan T,Wang F,et al. Fluorescent chemosensors based on spiroring-opening of xanthenes and related derivatives[J]. Chemical Reviews,2012,112:1 910-1 956.
[7]Noelting E,Dziewonsky K. Zur kenntniss der rhodamine[J]. Berichte der Deutschen Chemischen Gesellschaft,1905,38:3 516-3 527.
[8]Amat-Guerri F,Costela A,Figuera J M,et al. Laser action from rhodamine 6G-doped poly(2-hydroxyethyl methacrylate)matrices with different crosslinking degrees[J]. Chemical Physics Letters,1993,209:352-356.
[9]Multhaup G,Schlicksupp A,Hesse L,et al. The amyloid precursor protein of alzheimer’s disease in the reduction of copper(Ⅱ)to copper(Ⅰ)[J]. Science,1996,271:1 406-1 409.
[10]Dujols V,Ford F,Czarnik A W. A long-wavelength fluorescent chemodosimeter selective for Cu(Ⅱ)ion in water[J]. Journal of the American Chemical Society,1997,119:7 386-7 387.
[11]Xiang Y,Tong A. Ratiometric and selective fluorescent chemodosimeter for Cu(Ⅱ)by Cu(Ⅱ)-induced oxidation[J]. Luminescence,2008,23:28-31.
[12]Yu M,Shi M,Chen Z,et al. Highly sensitive and fast responsive fluorescence turn-on chemodosimeter for Cu2+ and its application in live cell imaging[J]. Chemistry-A European Journal,2008,14:6 892-6 900.
[13]Yuan L,Lin W,Chen B,et al. Development of FRET-based ratiometric fluorescent Cu2+ chemodosimeters and the applications for living cell imaging[J]. Organic Letters,2012,14:432-435.
[14]Fan J,Zhan P,Hu M,et al. A fluorescent ratiometric chemodosimeter for Cu2+ based on TBET and its application in living cells[J]. Organic Letters,2013,15:492-495.
[15]Office of Water,Environmental Protection Agency. Mercury Update:Impact on Fish Advisories; EPA Fact Sheet EPA-823-F-01-011[M]. Washington,DC:Environmental Protection Agency,2001.
[16]Kim K N,Choi M G,Noh J H,et al. Rhodamine B hydrazide revisited:chemodosimetric Hg2+-selective signaling behavior in aqueous environments[J]. Bulletin of the Korean Chemical Society,2008,29:571-574.
[17]Yang Y,Yook K,Tae J. A rhodamine-based fluorescent and colorimetric chemodosimeter for the rapid detection of Hg2+ ions in aqueous media[J]. Journal of the American Chemical Society,2005,127:16 760-16 761.
[18]Du J,Fan J,Peng X,et al. A new fluorescent chemodosimeter for Hg2+:selectivity,sensitivity,and resistance to Cys and GSH[J]. Organic Letters,2010,12:476-479.
[19]Gong Y,Zhang X,Chen Z,et al. An efficient rhodamine thiospirolactam-based fluorescent probe for detection of Hg2+ in aqueous samples[J]. Analyst,2012,137:932-938.
[20]Liu W,Xu L,Zhang H,et al. Dithiolane linked thiorhodamine dimer for Hg2+ recognition in living cells[J]. Organic & Biomolecular Chemistry,2009,7:660-664.
[21]Zhang X,Xiao Y,Qian X. A ratiometric fluorescent probe based on FRET for imaging Hg2+ ions in living cells[J]. Angewandte Chemie International Edition,2008,47:8 025-8 029.
[22]Shang G,Gao X,Chen M,et al. A novel Hg2+ selective ratiometric fluorescent chemodosimeter based on an intramolecular FRET mechanism[J]. Journal of Fluorescence,2008,18:1 187-1 192.
[23]Yu H,Xiao Y,Guo H,et al. Convenient and efficient FRET platform featuring a rigid biphenyl spacer between rhodamine and BODIPY:transformation of‘turn-on’ sensors into ratiometric ones with dual emission[J]. Chemistry-A European Journal,2011,17:3 179-3 191.
[24]Gong Y,Zhang X,Zhang C,et al. Through bond energy transfer:a convenient and universal strategy toward efficient ratiometric fluorescent probe for bioimaging applications[J]. Analytical Chemistry,2012,84:10 777-10 784.
[25]Lee M H,Giap T V,Kim S H,et al. A novel strategy to selectively detect Fe(Ⅲ)in aqueous media driven by hydrolysis of a rhodamine 6G Schiff base[J]. Chemical Communications,2010,46:1 407-1 409.
[26]Chatterjee A,Santra M,Won N,et al. Selective fluorogenic and chromogenic probe for detection of silver ions and silver nanoparticles in aqueous media[J]. Journal of the American Chemical Society,2009,131:2 040-2 041.
[27]Shi W,Sun S,Li X,et al. Imaging different interactions of mercury and silver with live cells by a designed fluorescence probe rhodamine B selenolactone[J]. Inorganic Chemistry,2010,49:1 206-1 210.
[28]Jou M J,Chen X Q,Swamy K M K,et al. Highly selective fluorescent probe for Au3+ based on cyclization of propargylamide[J]. Chemical Communications,2009,45:7 218-7 220.
[29]Egorova O A,Seo H,Chatterjee A,et al. Reaction-based fluorescent sensing of Au(Ⅰ)/Au(Ⅲ)species:mechanistic implications on vinylgold intermediates[J]. Organic Letters,2010,12:401-403.
[30]Yang Y,Lee S,Tae J,et al. A gold(Ⅲ)ion-selective fluorescent probe and its application to bioimagings[J]. Organic Letters,2009,11:5 610-5 613.
[31]Liu T Z,Lee S D,Bhatnagar R S. Toxicity of palladium[J]. Toxicology Letters,1979,4:469-473.
[32]Jun M E,Ahn K H. Fluorogenic and chromogenic detection of palladium species through a catalytic conversion of a rhodamine B derivative[J]. Organic Letters,2010,12:2 790-2 793.
[33]Kenmoku S,Urano Y,Kojima H,et al. Development of a highly specific rhodamine-based fluorescence probe for hypochlorous acid and its application to real-time imaging of phagocytosis[J]. Journal of the American Chemical Society,2007,129:7 313-7 318.
[34]Chen X Q,Lee K,Ha E,et al. A specific and sensitive method for detection of hypochlorous acid for the imaging of microbe-induced HOCl production[J]. Chemical Communications,2011,47:4 373-4 375.
[35]Yang Y,Cho H J,Lee J,et al. A rhodamine-hydroxamic acid-based fluorescent probe for hypochlorous acid and its applications to biological imagings[J]. Organic Letters,2009,11:859-861.
[36]Chen X,Wang X,Wang S,et al. A highly selective and sensitive fluorescence probe for the hypochlorite anion[J]. Chemistry-A European Journal,2008,14:4 719-4 724.
[37]Zheng H,Shang G,Yang S,et al. Fluorogenic and chromogenic rhodamine spirolactam based probe for nitric oxide by spiro ring opening reaction[J]. Organic Letters,2008,10:2 357-2 360.
[38]Hu X,Wang J,Zhu X,et al. A copper(Ⅱ)rhodamine complex with a tripodal ligand as a highly selective fluorescence imaging agent for nitric oxide[J]. Chemical Communications,2011,47:11 507-11 509.
[39]Li H,Fan J,Wang J,et al. A fluorescent chemodosimeter specific for cysteine:effective discrimination of cysteine from homocysteine[J]. Chemical Communications,2009,45:5 904-5 906.
[40]Sidell F R,Borak J. Chemical warfare agents:Ⅱ.Nerve agents[J]. Annals of Emergency Medicine,1992,21:865-871.
[41]Han S,Xue Z,Wang Z,et al. Visual and fluorogenic detection of a nerve agent simulant via a Lossen rearrangement of rhodamine-hydroxamate[J]. Chemical Communications,2010,46:8 413-8 415.
[42]Wu X,Wu Z,Yang Y,et al. A highly sensitive fluorogenic chemodosimeter for rapid visual detection of phosgene[J]. Chemical Communications,2012,48:1 895-1 897.
[43]Kim H N,Nam S,Swamy K M K,et al. Rhodamine hydrazone derivatives as Hg2+ selective fluorescent and colorimetric chemosensors and their applications to bioimaging and microfluidic system[J]. Analyst,2011,136:1 339-1 343.
[44]Wu D,Huang W,Duan C,et al. Highly sensitive fluorescent probe for selective detection of Hg2+ in DMF aqueous media[J]. Inorganic Chemistry,2007,46:1 538-1 540.
[45]Shiraishi Y,Sumiya S,Kohno Y,et al. A rhodamine-cyclen conjugate as a highly sensitive and selective fluorescent chemosensor for Hg(Ⅱ)[J]. The Journal of Organic Chemistry,2008,73:8 571-8 574.
[46]Huang J,Xu Y,Qian X. A rhodamine-based Hg2+ sensor with high selectivity and sensitivity in aqueous solution:A NS2-containing receptor[J]. The Journal of Organic Chemistry,2009,74:2 167-2 170.
[47]Yang H,Zhou Z,Huang K,et al. Multisignaling optical-electrochemical sensor for Hg2+ based on a rhodamine derivative with a ferrocene unit[J]. Organic Letters,2007,9:4 729-4 732.
[48]Suresh M,Mishra S,Mishra S K,et al. Resonance energy transfer approach and a new ratiometric probe for Hg2+ in aqueous media and living organism[J]. Organic Letters,2009,11:2 740-2 743.
[49]Xiang Y,Tong A,Jin P,et al. New fluorescent rhodamine hydrazone chemosensor for Cu(Ⅱ)with high selectivity and sensitivity[J]. Organic Letters,2006,8:2 863-2 866.
[50]Zhao Y,Zhang X,Han Z,et al. Highly sensitive and selective colorimetric and off-on fluorescent chemosensor for Cu2+ in aqueous solution and living cells[J]. Analytical Chemistry,2009,81:7 022-7 030.
[51]Swamy K M K,Ko S,Kwon S K,et al. Boronic acid-linked fluorescent and colorimetric probes for copper ions[J]. Chemical Communications,2008,45:5 915-5 917.
[52]Zhang J F,Zhou Y,Yoon J,et al. Naphthalimide modified rhodamine derivative:ratiometric and selective fluorescent sensor for Cu2+ based on two different approaches[J]. Organic Letters,2010,12:3 852-3 855.
[53]Lee M H,Kim H J,Yoon S,et al. Metal ion induced FRET OFF-ON in tren/dansyl-appended rhodamine[J]. Organic Letters,2008,10:213-216.
[54]Xiang Y,Tong A. A new rhodamine-based chemosensor exhibiting selective Fe-amplified fluorescence[J]. Organic Letters,2006,8:1 549-1 552.
[55]Mao J,Wang L,Dou W,et al. Tuning the selectivity of two chemosensors to Fe(Ⅲ)and Cr(Ⅲ)[J]. Organic Letters,2007,9:4 567-4 570.
[56]Zhang L,Fan J,Peng X. X-ray crystallographic and photophysical properties of rhodamine-based chemosensor for Fe3+[J]. Spectrochimica Acta Part A,2009,73:398-402.
[57]Cuajungco M P,Lees G J. Zinc metabolism in the brain:relevance to human neurodegenerative disorders[J]. Neurobiology of Disease,1997,4:137-169.
[58]Choi D W,Koh J Y. Zinc and brain injury[J]. Annual Review of Neuroscience,1998,21:347-375.
[59]Suh S W,Jensen K B,Jensen M S. Histochemically-reactive zinc in amyloid plaques,angiopathy,and degenerating neurons of Alzheimer’s diseased brains[J]. Brain Research,2000,852:274-278.
[60]Mashraqui S H,Khan T,Sundaram S,et al. Rhodamine-pyridyl probe:a selective optical reporter for biologically important Zn2+[J]. Chemistry Letters,2009,38:730-731.
[61]Han Z,Zhang X,Li Z,et al. Efficient fluorescence resonance energy transfer-based ratiometric fluorescent cellular imaging probe for Zn2+ using a rhodamine spirolactam as a trigger[J]. Analytical Chemistry,2010,82:3 108-3 113.
[62]Needleman H L. Human Lead Exposure[M]. Boca Raton:CRC Press,1992.
[63]Kwon J Y,Jang Y J,Lee Y J,et al. A highly selective fluorescent chemosensor for Pb2+[J]. Journal of the American Chemical Society,2005,127:10 107-10 111.
[64]Hu Z,Lin C,Wang X,et al. Highly sensitive and selective turn-on fluorescent chemosensor for Pb2+ and Hg2+ based on a rhodamine-phenylurea conjugate[J]. Chemical Communications,2010,46:3 765-3 767.
[65]Arakawa H,Ahmad R,Naoui M,et al. A comparative study of calf thymus DNA binding to Cr(Ⅲ)and Cr(Ⅵ)ions. Evidence for the guanine N-7-chromium-phosphate chelate formation[J]. The Journal of Biological Chemistry,2000,275:10 150-10 153.
[66]Vincent J B. Quest for the molecular mechanism of chromium action and its relationship to diabetes[J]. Nutrition Reviews,2000,58:67-72.
[67]Huang K,Yang H,Zhou Z,et al. Multisignal chemosensor for Cr3+ and its application in bioimaging[J]. Organic Letters,2008,10:2 557-2 560.
[68]Zhou Z,Yu M,Yang H,et al. FRET-based sensor for imaging chromium(Ⅲ)in living cells[J]. Chemical Communications,2008,29:3 387-3 389.
[69]Li H,Fan J,Du J,et al. A fluorescent and colorimetric probe specific for palladium detection[J]. Chemical Communications,2010,46:1 079-1 081.
[70]Li H,Fan J,Song F,et al. Fluorescent probes for Pd2+ detection by allylidene-hydrazone ligands with excellent selectivity and large fluorescence enhancement[J]. Chemistry-A European Journal,2010,16:12 349-12 356.
[71]Kim H,Lee S,Lee J,et al. Rhodamine triazole-based fluorescent probe for the detection of Pt2+[J]. Organic Letters,2010,12:5 342-5 345.
[72]Huang W,Wu D,Guo D,et al. Efficient near-infrared emission of a Ytterbium(Ⅲ)compound with a green light rhodamine donor[J]. Dalton Transactions,2009,12:2 081-2 084.
[73]Martinez-Zaguilln R,Chinnock B F,Wald-Hopkins S,et al. [Ca2+]i and pHin homeostasis in Kaposi Sarcoma cells[J]. Cellular Physiology and Biochemistry,1996,6:169-184.
[74]Shimizu Y,Hunt S W. Regulating integrin-mediated adhesion:one more function for PI 3-kinase?[J]. Immunology Today,1996,17:565-573.
[75]Falke J J,Bass R B,Butler S L,et al. The two-component signaling pathway of bacterial chemotaxis:a molecular view of signal transduction by receptors,kinases,and adaptation enzymes[J]. Annual Review of Cell and Developmental Biology,1997,13:457-512.
[76]Satoh H,Hayashi H,Katoh H,et al. Na+/H+and Na+/Ca2+ exchange in regulation of[Na+]iand[Ca2+]i during metabolic inhibition[J]. American Journal of Physiology,1995,268:H1 239-1 248.
[77]Kogot-Levin A,Zeigler M,Ornoy A,et al. Mucolipidosis type Ⅳ:the effect of increased lysosomal pH on the abnormal lysosomal storage[J]. Pediatric Research,2009,65:686-690.
[78]Poschet J,Perkett E,Deretic V. Hyperacidification in cystic fibrosis:links with lung disease and new prospects for treatment[J]. Trends in Molecular Medicine,2002,8:512-519. [79]Best Q A,Xu R,McCaroll M E,et al. Design and investigation of a series of rhodamine-based fluorescent probes for optical measurements of pH[J]. Organic Letters,2010,12:3 219-3 221.
[80]Xue Z,Chen M,Chen J,et al. A rhodamine-benzimidazole based sensor for selective imaging of acidic pH[J]. RSC Advances,2014,4:374-378.
[81]Zhu H,Fan J,Xu Q,et al. Imaging of lysosomal pH changes with a fluorescent sensor containing a novel lysosome-locating group[J]. Chemical Communications,2012,48:11 766-11 768.
[82]Shi X,Mao G,Zhang X,et al. Rhodamine-based fluorescent probe for direct bio-imaging of lysosomal pH changes[J]. Talanta,2014,130:356-362.
[83]Lee M H,Han J H,Lee J H,et al. Two-color probe to monitor a wide range of pH values in cells[J]. Angewandte Chemie International Edition,2013,52:6 206-6 209.
[84]Fan J,Li C,Li H,et al. A ratiometric lysosomal pH chemosensor based on fluorescence resonance energy transfer[J]. Dyes and Pigments,2013,99:620-626.

Memo

Memo:
-
Last Update: 2015-06-30