|Table of Contents|

The Electron Transport Properties of Pd Nanoparticle Arrays and Its Relationship with the Coverage(PDF)

《南京师大学报(自然科学版)》[ISSN:1001-4616/CN:32-1239/N]

Issue:
2015年02期
Page:
43-
Research Field:
物理学
Publishing date:

Info

Title:
The Electron Transport Properties of Pd Nanoparticle Arrays and Its Relationship with the Coverage
Author(s):
Gao Jun12Han Min2
(1.College of Physics & Electronic Engineering,Changshu Institute of Technology,Changshu 215500,China) (2.National Laboratory of Solid State Microstructures,Nanjing University,Nanjing 210093,China)
Keywords:
nanoparticle arrayscoveragequantum transport propertiesvariable range hopping(VRH)thermally activated tunneling
PACS:
O437
DOI:
-
Abstract:
The electron transport properties of Pd nanoparticle arrays at different temperature is investigated. The coverage of the nanoparticles is controlled to approach the percolation threshold,the conductance of the nanoparticle films show obviously quantum transport behaviors. The I-V curves of the nanoparticle arrays become more and more nonlinear with the decrease of the temperature,and they can be fitted with the Middleton-Wingreen(MW)scaling model. For the nanoparticle arrays under quantum conducting state,variable range hopping(VRH)is the main electron transport mechanism at low temperature,while at high temperature,thermally activated tunneling become the dominant transport mechanism.

References:

[1] Dirix Y,Bastiaansen C,Caseri W,et al. Oriented Pearl-Necklace arrays of metallic nanoparticles in polymers:a new route toward polarization-dependent color filters[J]. Adv Mater,1999,11(3):223-227.
[2]Knoll W. Interfaces and thin films as seen by bound electromagnetic waves[J]. Annu Rev Phys Chem,1998,49:569-638.
[3]Maier S A,Brongersma M L,Kik P G,et al. Plasmonics—a route to nanoscale optical devices[J]. Adv Mater,2001,13(19):1 501-1 505.
[4]Storhoff J J,Elghanian R,Mucic R C,et al. One-pot colorimetric differentiation of polynucleotides with single base imperfections using gold nanoparticle probes[J]. J Am Chem Soc,1998,120(9):1 959-1 964.
[5]Haes A J,Van Duyne R P. A nanoscale optical biosensor:sensitivity and selectivity of an approach based on the localized surface plasmon resonance spectroscopy of triangular silver nanoparticles[J]. J Am Chem Soc,2002,124(35):10 596-10 604.
[6]Cao Y W C,Jin R C,Mirkin C A. Nanoparticles with Raman spectroscopic fingerprints for DNA and RNA detection[J]. Science,2002,297(5 586):1 536-1 540.
[7]Kahl M,Voges E,Kostrewa S,et al. Periodically structured metallic substrates for SERS[J]. Sens Actuators:B,1998,51(1/2/3):285-291.
[8]Freeman R G,Grabar K C,Allison K J,et al. Self-assembled metal colloid monolayers:an approach to SERS substrates[J]. Science,1995,267(5 204):1 629-1 632.
[9]Suvakov M,Tadic B. Modeling collective charge transport in nanoparticle assemblies[J]. J Phys-Condens Mat,2010,22(16):123-201.
[10]Xie B,Liu L L,Peng X,et al. Optimizing hydrogen sensing behavior by controlling the coverage in Pd nanoparticle films[J]. J Phys Chem:C,2011,115(32):16 161-16 166.
[11]He L B,Chen X,Mu Y W,et al. Two-dimensional gradient Ag nanoparticle assemblies:multiscale fabrication and SERS applications[J]. Nanotechnology,2010,21(49):495-601.
[12]Middleton A A,Wingreen N S. Collective transport in arrays of small metallic dots[J]. Phys Rev Lett,1993,71(19):3 198-3 201.
[13]Simmons J G. Generalized formula for the electric tunnel effect between similar electrodes separated by a thin insulating film[J]. J Appl Phys,1963,34(6):1 793-1 803.
[14]Neugebauer C A,Webb M B. Electrical conduction mechanism in ultrathin,evaporated metal films[J]. J Appl Phys,1962,33(1):74-81.
[15]Mott N F. Electrons in disordered structures[J]. Adv Phys,1967,16(61):49-144.
[16]Mott N F,Davis E A. Conduction in non-crystalline systems. Ⅱ. Metal-insulator transition in a random array of centres[J]. Philosophical Magazine,1968,17(150):1 269-1 284.
[17]Greshnykh D,Fromsdorf A,Weller H,et al. On the electric conductivity of highly ordered monolayers of monodisperse metal nanoparticles[J]. Nano Lett,2009,9(1):473-478.
[18]Efros A L,Shklovskii B I. Coulomb gap and low-temperature conductivity of disordered systems[J]. J Phys C Solid State,1975,8(4):L49-L51.
[19]Beverly K C,Sampaio J F,Heath J R. Effects of size dispersion disorder on the charge transport in self-assembled 2-d ag nanoparticle arrays[J]. J Phys Chem B,2002,106(9):2 131-2 135.

Memo

Memo:
-
Last Update: 2015-06-30