|Table of Contents|

Adsorption and Desorption of Pb2+,Zn2+,Cd2+,Cu2+ and Cr3+by Bacillus mucilaginosus(PDF)

《南京师大学报(自然科学版)》[ISSN:1001-4616/CN:32-1239/N]

Issue:
2018年01期
Page:
68-
Research Field:
·生命科学·
Publishing date:

Info

Title:
Adsorption and Desorption of Pb2+,Zn2+,Cd2+,Cu2+ and Cr3+by Bacillus mucilaginosus
Author(s):
Zou Chunyan12Yu Yangge1Lian Bin1
(1.School of Life Sciences,Nanjing Normal University,Nanjing 210023,China)(2.Guiyang Yunyan District of Ecological Civilization Construction Bureau,Guiyang 550001,China)
Keywords:
Bacillus mucilaginosusbiological adsorptionheavy metalsdesorption
PACS:
X753
DOI:
10.3969/j.issn.1001-4616.2018.01.013
Abstract:
The methods for efficient treatment of heavy metal wastewater and recovery of heavy metal ions by adopting the microbial flocculant have received extensive attention of the industry. In this paper,the microbial adsorbents produced by the culture of Bacillus mucilaginosus K02 strain were used to study the characteristics of adsorption and desorption of heavy metal ions like Pb2+,Zn2+,Cd2+,Cu2+ and Cr3+. Atomic adsorption method was used to determine the concentration of heavy metal ions under different treatment conditions. It was found that the adsorption on the single metal ion could reach equilibrium within 2 hours,and the adsorption capacity of the adsorbent could reach 60% in 10 minutes. The results also showed that the adsorption rate of microbial flocculant to the five metal ions increased by the amount of adsorbents’ increasing,and the optimum pH of adsorption was 4~7. The original concentration of ions could affect the adsorption rate greatly. For the adsorption of mixed metal ions,the adsorbent could simultaneously adsorb the five kinds of ions and show a strong selectivity to Pb2+,in which the adsorption rate can reach more than 90%. Oxalic acid,EDTA-2Na ammonium oxalate,and sodium nitrate were used to desorb the adsorbent after adsorption. It was found that oxalic acid had the best desorption effect on Cu2+ and the desorption rate was 42.238%. In addition,ammonium oxalate,EDTA-2Na has a selectivity to Pb2+ that desorption rate can reach more than 64%. The results provides basic data for the microbial adsorbents prepared by the K02 strain in the practical application of heavy metal wastewater treatment.

References:

[1] 王涛,李鑫钢,杜启云. 含重金属离子废水处理技术的研究进展[J]. 化工环保,2008,28(4):323-326.
[2]郭冀峰,逯延军. 含重金属离子废水处理进展[J]. 有色金属加工,2006,35(4):48-51.
[3]LIN C,WU Y,LU W,et al.Water chemistry and ecotoxicity of an acid mine drainage-affected stream in subtropical China during a major flood event[J]. Journal of hazardous material,2007,142(1):199-207.
[4]马守臣,马守田,李春喜,等. 矿井废水灌溉对小麦生理特性及重金属积累的影响[J]. 应用生态学报,2013,24(11):3 243-3 248.
[5]周益奇,刘云霞,傅慧敏. 中水浇灌对土壤重金属污染的影响[J]. 环境科学,2016,37(1):288-292.
[6]张小敏,张秀英,江洪,等. 中国农田土壤重金属富集状况及其空间分布研究[J]. 环境科学,2014,35(2):692-703.
[7]邹嫣,司友斌,陈艳,等. Geobacter sulfurreducens对汞的甲基化及其影响因素研究[J]. 环境科学,2012,33(9):3 247-3 252.
[8]张传雷,孙南南,沈树宝,等. 重金属废水处理技术和资源化概述[J]. 现代化工,2014,34(4):38-41.
[9]李阳,杨高英,雷兆武. 重金属废水处理与资源化利用现状[J]. 电力环境保护,2009,25(4):50-51.
[10]马前,张小龙. 国内外重金属废水处理新技术的研究进展[J]. 环境工程学报,2007,1(7):10-14.
[11]孙建民,于丽清,孙汉文. 重金属废水处理技术进展[J]. 河北大学学报(自然科学版),2004,24(4):438-443.
[12]王建龙,陈灿. 生物吸附法去除重金属离子的研究进展[J]. 环境科学学报,2010,30(4):673-701.
[13]王亚雄,郭瑾珑,刘瑞霞. 微生物吸附剂对重金属的吸附特性[J]. 环境科学,2001,22(6):72-72.
[14]张晓辉,李双石,杨国伟,等. 产絮凝剂微生物的制备及其絮凝成分分析[J]. 安全与环境工程,2008,15(4):39-42.
[15]吴涓,李清彪. 黄孢原毛平革菌吸附铅离子机理的研究[J]. 环境科学学报,2001,21(3):291-295.
[16]陈素华,孙铁珩,吴国平,等. 微生物与重金属间的相互作用及其应用研究[J]. 应用生态学报,2002,13(2):239-242.
[17]EHLERS G A C,TURNER S J. Evaluation of extra cellular biopolymer and it’s impact on bioflocculation inactivated sludge bioreactors[J]. Water science and technology,2011,63(4):689-694.
[18]BAYRAMOGLU G,BEKTAS S,ARICA M Y. Biosorption of heavy metal ions on immobilized white-rot fungus Trametes versicolor[J]. Journal of hazardous materials,2003,101(3):285-330.
[19]凌云,肖智杰,连宾. 胶质芽孢杆菌荚膜染色方法比较与改进[J]. 南京师大学报(自然科学版),2007,30(4):84-88.
[20]MO B B,LIAN B. Hg(II)Adsorption by Bacillus mucilaginosus:mechanism and equilibrium parameters[J]. World journal of microbiology and biotechnology,2011,27(2):1 063-1 070.
[21]刘刚,李清彪. 重金属生物吸附的基础和过程研究[J]. 水处理技术,2002,28(1):17-21.
[22]赵光,郑盼,马放,等. 沼液微生物絮凝剂重金属吸附特性的研究[J]. 中国沼气,2016,34(5):17-21.
[23]刘瑞霞,潘建华,汤鸿霄,等. Cu(Ⅱ)离子在Micrococcus luteus细菌上的吸附机理[J]. 环境化学,2002,21(1):50-55.
[24]曹明莉,盛智博,张会霞. 溶液pH值对石墨烯及其复合材料吸附重金属离子的影响[J]. 功能材料,2016,47(9):9 051-9 056.
[25]LIAN B,CHEN Y,ZHAO J,et al. Microbial flocculation by silicate bacterium bacillus mucilaginosus:applications and mechanisms[J]. Bioresource technology,2008,99(11):4 825-4 831.
[26]刘瑞霞,汤鸿霄,劳伟雄. 重金属的生物吸附机理及吸附平衡模式研究[J]. 化学进展,2002,14(2):87-92.
[27]ARUNAKUMARA,ZHANG X C. Heavy metal bioaccumulation and toxicity with special reference to microalgae[J]. Journal of ocean university of China,2008,7(1):60-64.
[28]王竞,陶颖,周集体. 细菌胞外高聚物对水中六价铬的生物吸附特性[J]. 水处理技术,2001,3(27):145-147.
[29]刘国臣. 金属离子水解常数与价电子平均结合能的关系[J]. 哈尔滨学院学报,2002,23(8):40-41.
[30]朱一民,魏德洲. Mycobacterium phlei菌对重金属Pb2+,Zn2+,Ni2+,Cu2+的吸附规律[J]. 东北大学学报(自然科学版),2003,24(1):91-93.
[31]SARRET G,VANGRONSVELD J,MANCEAU A. Accumulation forms of Zn and Pb in Phaseolus vulgaris in the presence and absence of EDTA[J]. Environmental sciences,2001,35(13):2 854-2 859.
[32]魏淑梅,杨朝晖,汪理科,等. 微生物絮凝剂去除废水中Cd(Ⅱ)的CCD优化及絮凝机制[J]. 中国沼气,2016,34(5):17-21.
[33]谢玉清,茆军,顾美英,等. 一株产絮凝剂的类芽孢杆菌新种及絮凝特性研究[J]. 环境科学与技术,2014,37(4):7-10.
[34]LIU Y Q,LIU Y,TAY J H. The effects of extracellular polymeric substances on the formation and stability of biogranules[J]. Appl Microbiol Biotechnol,2004,65(2):143-148.

Memo

Memo:
-
Last Update: 2018-03-31