|Table of Contents|

Online Spatial Crowdsourcing Matching Algorithm for Disaster Relief(PDF)

《南京师大学报(自然科学版)》[ISSN:1001-4616/CN:32-1239/N]

Issue:
2024年04期
Page:
21-30
Research Field:
空间数据智能研究
Publishing date:

Info

Title:
Online Spatial Crowdsourcing Matching Algorithm for Disaster Relief
Author(s):
Liu Junling12Wu Qingqing12Dong Shanshan12Sun Huanliang12Xu Jingke123
(1.School of Computer Science and Engineering,Shenyang Jianzhu University,Shenyang 110168,China)
(2.Liaoning Province Big Data Management and Analysis Laboratory of Urban Construction,Shenyang 110168,China)
(3.Shenyang Branch of National Special Computer Engineering Technology Research Center,Shenyang 110168,China)
Keywords:
spatial crowdsourcingdisaster relieftask matchingtask levelminimum loss
PACS:
TP399
DOI:
10.3969/j.issn.1001-4616.2024.04.003
Abstract:
After disasters,people often post information about volunteer rescue efforts and requests for help from the affected on social media platforms. Extracting the information of help task and rescue personnel from these data and making a reasonable match between them can provide effective support for rescue. In this paper,spatial crowdsourcing technology is introduced into the field of disaster relief,and online spatial crowdsourcing matching problem for disaster relief is proposed. The disaster event information extraction model is constructed by using deep learning classification method and large-scale language model to realize the accurate extraction of rescue and help information. The task rating method and dynamic loss measurement are designed to reflect the urgency of the task and the dynamic change of the loss. A greedy algorithm combining preempt and delay strategies is proposed based on dynamic loss measurement. Through detailed experimental analysis of real data sets and synthetic data sets,the total loss of the greedy algorithm combining preempt and delay strategies is reduced by at least 35% compared with the existing algorithm,and the effectiveness of the proposed algorithm is verified.

References:

[1]ZHENG Y J,LING H F,XU X L,et al. Emergency scheduling of engineering rescue tasks in disaster relief operations and its application in China[J]. International transactions in operational research,2015,22(3):503-518.
[2]MOLLAH A K,SADHUKHAN S,DAS P,et al. A cost optimization model and solutions for shelter allocation and relief distribution in flood scenario[J]. International journal of disaster risk reduction,2018,31:1187-1198.
[3]BEIGI G,HU X,MACIEJEWSKI R,et al. An overview of sentiment analysis in social media and its applications in disaster relief[M]//PEDRYCZ W,CHEN S. Sentiment Analysis and Ontology Engineering. Cham:Springer,2016.
[4]GAO H,BARBIER G,GOOLSBY R. Harnessing the crowdsourcing power of social media for disaster relief[J]. IEEE intelligent systems,2011,26(3):10-14.
[5]KAZEMI L,SHAHABI C. Geocrowd:enabling query answering with spatial crowdsourcing[C]//Proceedings of the 20th International Conference on Advances in Geographic Information Systems. Redondo Beach:Association for Computing Machinery,2012:189-198.
[6]WU B,HAN K,ZHANG E. On the task assignment with group fairness for spatial crowdsourcing[J]. Information processing & management,2023,60(2):103175-103187.
[7]GUO X Y,HE T T. Survey about research on information extraction[J]. Computer science,2015,42(2):14-17.
[8]王剑,彭雨琦,赵宇斐,等. 基于深度学习的社交网络舆情信息抽取方法综述[J]. 计算机科学,2022,49(8):279-293.
[9]张仰森,刘帅康,刘洋,等. 基于深度学习的实体关系联合抽取研究综述[J]. 电子学报,2023,51(4):1093-1116.
[10]王浩畅,周郴莲,MARIUS G P. 基于深度学习的事件抽取研究综述[J]. 软件学报,2023,34(8):3905-3923.
[11]车万翔,窦志成,冯岩松,等. 大模型时代的自然语言处理:挑战、机遇与发展[J]. 中国科学:信息科学,2023,53(9):1645-1687.
[12]邓成汝,凌捷. 融合预训练模型与神经网络的实体关系抽取[J]. 计算机工程与设计,2023,44(7):2023-2029.
[13]TONG Y,ZHOU Z,ZENG Y,et al. Spatial crowd-sourcing:a survey[J]. The VLDB journal,2020,29:217-250.
[14]CHENG P,JIAN X,CHEN L. An experimental evaluation of task assignment in spatial crowdsourcing[J]. Proceedings of the VLDB endowment,2018,11(11):1428-1440.
[15]DENG D,SHAHABI C,DEMIRYUREK U. Maximizing the number of worker's self-selected tasks in spatial crowdsourcing[C]//Proceedings of the 21st ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems. Orlando:Association for Computing Machinery,2013:314-323.
[16]DANIEL F,KUCHERBAEV P,CAPPIELLO C,et al. Quality control in crowdsourcing:a survey of quality attributes,assessment techniques,and assurance actions[J]. ACM computing surveys,2018,51(1):1-40.
[17]DENG D,SHAHABI C,ZHU L. Task matching and scheduling for multiple workers in spatial crowdsourcing[C]//Proceedings of the 23rd SIGSPATIAL International Conference on Advances in Geographic Information Systems. Seattle:Association of Computing Machinery,2015:1-10.
[18]陶阳阳. 众包模式下志愿者参与应急管理的意愿及影响因素研究[D]. 成都:四川大学,2021.
[19]朱国齐,郑乾,赵雨晴. 众包视角下救灾减灾的社会参与系统运行机制研究[J]. 价值工程,2018,37(33):286-289.
[20]HUTAGALUNG S,INDRAJAT H. Developing a crowdsourcing-based disaster relief model based on public participation[J]. International journal of safety and security engineering,2023,13(1):115-120.
[21]刘胜枝. 媒介向善中的“救命文档”共享型媒介的特征与启示[J]. 人民论坛,2022(9):86-89.
[22]ZOOK M,GRAHAM M,SHELTON T,et al. Volunteered geographic information and crowdsourcing disaster relief:a case study of the Haitian earthquake[J]. World medical & health policy,2010,2(2):7-33.
[23]孙焕良,王思懿,刘俊岭,等. 社交媒体数据中水灾事件求助信息提取模型[J]. 计算机应用,2024,44(8):2437-2445.
[24]陈报章,仲崇庆. 自然灾害风险损失等级评估的初步研究[J]. 灾害学,2010,25(3):1-5.
[25]SARMA D,DAS A,DUTTA P,et al. A cost minimization resource allocation model for disaster relief operations with an information crowdsourcing-based MCDM approach[J]. IEEE transactions on engineering management,2020,69(5):2454-2474.
[26]李超超,程晓陶,王艳艳,等. 洪涝灾害三参数损失函数的构建Ⅰ:基本原理[J]. 水利学报,2020,51(3):349-357.
[27]PARADILAGA S N,SULISTYONINGSIH M,LESTARI R K,et al. Flood prediction using inverse distance weighted interpolation of k-nearest neighbor points[C]//2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS. Brussels:IEEE,2021:4616-4619.
[28]CHENG P,JIAN X,CHEN L. Task assignment on spatial crowdsourcing(Technical Report)[J]. arXiv:1605.09675,2016.

Memo

Memo:
-
Last Update: 2024-12-15