[1]ZHENG Y J,LING H F,XU X L,et al. Emergency scheduling of engineering rescue tasks in disaster relief operations and its application in China[J]. International transactions in operational research,2015,22(3):503-518.
[2]MOLLAH A K,SADHUKHAN S,DAS P,et al. A cost optimization model and solutions for shelter allocation and relief distribution in flood scenario[J]. International journal of disaster risk reduction,2018,31:1187-1198.
[3]BEIGI G,HU X,MACIEJEWSKI R,et al. An overview of sentiment analysis in social media and its applications in disaster relief[M]//PEDRYCZ W,CHEN S. Sentiment Analysis and Ontology Engineering. Cham:Springer,2016.
[4]GAO H,BARBIER G,GOOLSBY R. Harnessing the crowdsourcing power of social media for disaster relief[J]. IEEE intelligent systems,2011,26(3):10-14.
[5]KAZEMI L,SHAHABI C. Geocrowd:enabling query answering with spatial crowdsourcing[C]//Proceedings of the 20th International Conference on Advances in Geographic Information Systems. Redondo Beach:Association for Computing Machinery,2012:189-198.
[6]WU B,HAN K,ZHANG E. On the task assignment with group fairness for spatial crowdsourcing[J]. Information processing & management,2023,60(2):103175-103187.
[7]GUO X Y,HE T T. Survey about research on information extraction[J]. Computer science,2015,42(2):14-17.
[8]王剑,彭雨琦,赵宇斐,等. 基于深度学习的社交网络舆情信息抽取方法综述[J]. 计算机科学,2022,49(8):279-293.
[9]张仰森,刘帅康,刘洋,等. 基于深度学习的实体关系联合抽取研究综述[J]. 电子学报,2023,51(4):1093-1116.
[10]王浩畅,周郴莲,MARIUS G P. 基于深度学习的事件抽取研究综述[J]. 软件学报,2023,34(8):3905-3923.
[11]车万翔,窦志成,冯岩松,等. 大模型时代的自然语言处理:挑战、机遇与发展[J]. 中国科学:信息科学,2023,53(9):1645-1687.
[12]邓成汝,凌捷. 融合预训练模型与神经网络的实体关系抽取[J]. 计算机工程与设计,2023,44(7):2023-2029.
[13]TONG Y,ZHOU Z,ZENG Y,et al. Spatial crowd-sourcing:a survey[J]. The VLDB journal,2020,29:217-250.
[14]CHENG P,JIAN X,CHEN L. An experimental evaluation of task assignment in spatial crowdsourcing[J]. Proceedings of the VLDB endowment,2018,11(11):1428-1440.
[15]DENG D,SHAHABI C,DEMIRYUREK U. Maximizing the number of worker's self-selected tasks in spatial crowdsourcing[C]//Proceedings of the 21st ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems. Orlando:Association for Computing Machinery,2013:314-323.
[16]DANIEL F,KUCHERBAEV P,CAPPIELLO C,et al. Quality control in crowdsourcing:a survey of quality attributes,assessment techniques,and assurance actions[J]. ACM computing surveys,2018,51(1):1-40.
[17]DENG D,SHAHABI C,ZHU L. Task matching and scheduling for multiple workers in spatial crowdsourcing[C]//Proceedings of the 23rd SIGSPATIAL International Conference on Advances in Geographic Information Systems. Seattle:Association of Computing Machinery,2015:1-10.
[18]陶阳阳. 众包模式下志愿者参与应急管理的意愿及影响因素研究[D]. 成都:四川大学,2021.
[19]朱国齐,郑乾,赵雨晴. 众包视角下救灾减灾的社会参与系统运行机制研究[J]. 价值工程,2018,37(33):286-289.
[20]HUTAGALUNG S,INDRAJAT H. Developing a crowdsourcing-based disaster relief model based on public participation[J]. International journal of safety and security engineering,2023,13(1):115-120.
[21]刘胜枝. 媒介向善中的“救命文档”共享型媒介的特征与启示[J]. 人民论坛,2022(9):86-89.
[22]ZOOK M,GRAHAM M,SHELTON T,et al. Volunteered geographic information and crowdsourcing disaster relief:a case study of the Haitian earthquake[J]. World medical & health policy,2010,2(2):7-33.
[23]孙焕良,王思懿,刘俊岭,等. 社交媒体数据中水灾事件求助信息提取模型[J]. 计算机应用,2024,44(8):2437-2445.
[24]陈报章,仲崇庆. 自然灾害风险损失等级评估的初步研究[J]. 灾害学,2010,25(3):1-5.
[25]SARMA D,DAS A,DUTTA P,et al. A cost minimization resource allocation model for disaster relief operations with an information crowdsourcing-based MCDM approach[J]. IEEE transactions on engineering management,2020,69(5):2454-2474.
[26]李超超,程晓陶,王艳艳,等. 洪涝灾害三参数损失函数的构建Ⅰ:基本原理[J]. 水利学报,2020,51(3):349-357.
[27]PARADILAGA S N,SULISTYONINGSIH M,LESTARI R K,et al. Flood prediction using inverse distance weighted interpolation of k-nearest neighbor points[C]//2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS. Brussels:IEEE,2021:4616-4619.
[28]CHENG P,JIAN X,CHEN L. Task assignment on spatial crowdsourcing(Technical Report)[J]. arXiv:1605.09675,2016.