[1]李邵莹,孟丹,孔超,等. 面向社交推荐的自适应高阶隐式关系建模[J]. 软件学报,2023,34(10):4851-4869.
[2]HUANG L,CHEN X,ZHANG Y,et al. Identification of topic evolution:network analytics with piecewise linear representation and word embedding[J]. Scientometrics,2022,127(9):5353-5383.
[3]HROVATIN K,FISCHER D S,THEIS F J. Toward modeling metabolic state from single-cell transcriptomics[J]. Molecular metabolism,2022,57:101396.
[4]YUAN Q M,CHEN J W,ZHAO H Y,et al. Structure-aware protein-protein interaction site prediction using deep graph convolutional network[J]. Bioinformatics,2022,38(1):125-132.
[5]刘会,张璇,杨兵,云炜,等. 用于社交推荐的增强影响扩散模型[J]. 计算机学报,2023,46(3):626-642.
[6]HINTON G E,SALAKHUTDINOV R R. Reducing the dimensionality of data with neural networks[J]. Science,2006,313(5786):504-507.
[7]BO D Y,WANG X,SHI C,et al. Structural deep clustering network[C]//Proceedings of the Web Conference 2020. New York:Association for Computing Machinery,2020:1400-1410.
[8]PENG Z,LIU H,JIA Y,et al. Attention-driven graph clustering network[C]//Proceedings of the 29th ACM International Conference on Multimedia. New York:Association for Computing Machinery,2021:935-943.
[9]XIE J Y,GIRSHICK R,FARHADI A. Unsupervised deep embedding for clustering analysis[C]//Proceedings of International Conference on Machine Learning. New York:Association for Computing Machinery,2016:478-487.
[10]GUO X F,GAO L,LIU X W,et al. Improved deep embedded clustering with local structure preservation[C]//Proceedings of IJCAI. New York:Association for Computing Machinery,2017:1753-1759.
[11]KIPF T N,WELLING M. Semi-supervised classification with graph convolutional networks[J/OL]. arXiv preprint arXiv:1609.02907,2016.
[12]KIPF T N,WELLING M. Variational graph auto-encoders[J/OL]. arXiv preprint arXiv:1611.07308,2016.
[13]WANG C,PAN S R,HU R Q,et al. Attributed graph clustering:A deep attentional embedding approach[J/OL]. arXiv preprint arXiv:1906.06532,2019.
[14]林晶晶,冶忠林,赵海兴,等. 超图神经网络综述[J]. 计算机研究与发展,2024,61(2):362-384.
[15]WANG C,PAN S R,LONG G D,et al. Mgae:Marginalized graph autoencoder for graph clustering[C]//Proceedings of the 2017 ACM on Conference on Information and Knowledge Management. New York:Association for Computing Machinery,2017:889-898.
[16]YOU Y N,CHEN T L,SUI Y D,et al. Graph contrastive learning with augmentations[J]. Advances in neural information processing systems,2020,33:5812-5823.
[17]HU Y,YOU H X,WANG Z C,et al. Graph-mlp:Node classification without message passing in graph[J/OL]. arXiv preprint arXiv:2106.04051,2021.
[18]KIPF T,VAN DER POL E,WELLING M. Contrastive learning of structured world models[J/OL]. arXiv preprint arXiv:1911.12247,2019.
[19]PAN S R,HU R Q,LONG G D,et al. Adversarially regularized graph autoencoder for graph embedding[J/OL]. arXiv preprint arXiv:1802.04407,2018.
[20]YANG X H,HU X C,ZHOU S H,et al. Interpolation-based contrastive learning for few-label semi-supervised learning[J]. IEEE transactions on neural networks and learning systems,2022,35(2):2054-2065.
[21]XIA J,WU L,CHEN J,et al. SimGRACE:A simple framework for graph contrastive learning without data augmentation[J/OL]. arXiv preprint arXiv:2202.03104,2022.
[22]WANG Y,CAI Y,LIANG Y,et al. Adaptive data augmentation on temporal graphs[J]. Advances in neural information processing systems,2021(34):1440-1452.
[23]CHEN T,KORNBLITH S,NOROUZI M,et al. A simple framework for contrastive learning of visual representations[C]//Proceedings of International Conference on Machine Learning. New York:Association for Computing Machinery,2020:1597-1607.
[24]HASSANI K,KHASAHMADI A H. Contrastive multi-view representation learning on graphs[C]//Proceedings of International Conference on Machine Learning. New York:Association for Computing Machinery,2020:4116-4126.
[25]ZHU J,ROSSI R A,RAO A,et al. Graph neural networks with heterophily[C]//Proceedings of the AAAI Conference on Artificial Intelligence. New York:Association for Computing Machinery,2021:11168-11176.
[26]VELICKOVIC P,FEDUS W,HAMILTON W L,et al. Deep graph infomax[J]. ICLR,2019,2(3):4.
[27]蒋林浦,陈可佳. 基于对比预测的自监督动态图表示学习方法[J]. 计算机科学,2023,50(7):207-221.
[28]LIKAS A,VLASSIS N,VERBEEK J J. The global k-means clustering algorithm[J]. Pattern recognition,2003,36(2):451-461.
[29]VON LUXBURG U. A tutorial on spectral clustering[J]. Statistics and computing,2007,17:395-416.
[30]PEROZZI B,AL-RFOU R,SKIENA S. Deepwalk:Online learning of social representations[C]//Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York:Association for Computing Machinery,2014:701-710.
[31]TIAN F,GAO B,CUI Q,et al. Learning deep representations for graph clustering[C]//Proceedings of the AAAI Conference on Artificial Intelligence. New York:Association for Computing Machinery,2014.
[32]CAO S,LU W,XU Q. Deep neural networks for learning graph representations[C]//Proceedings of the AAAI Conference on Artificial Intelligence. New York:Association for Computing Machinery,2016.
[33]ZHANG X T,LIU H,LI Q M,et al. Attributed graph clustering via adaptive graph convolution[J/OL]. arXiv preprint arXiv:1906.01210,2019.
[34]HE D X,SONG Y,JIN D,et al. Community-centric graph convolutional network for unsupervised community detection[C]//Proceedings of the 29th International Conference on International Joint Conferences on Artificial Intelligence. San Francisco:International Joint Conferences on Artificial Intelligence,2021:3515-3521.
[35]ZHANG X T,LIU H,WU X M,et al. Spectral embedding network for attributed graph clustering[J]. Neural networks,2021,142:388-396.
[36]SALEHI A,DAVULCU H. Graph attention auto-encoders[J/OL]. arXiv preprint arXiv:1905.10715,2019.
[37]WANG C,PAN S R,CELINA P Y,et al. Deep neighbor-aware embedding for node clustering in attributed graphs[J]. Pattern recognition,2022,122:108230.