|Table of Contents|

A C0P1 Time Stepping Method for Solving 2D Sine-Gordon Equations(PDF)

《南京师范大学学报》(自然科学版)[ISSN:1001-4616/CN:32-1239/N]

Issue:
2017年01期
Page:
1-
Research Field:
·数学与计算机科学·
Publishing date:

Info

Title:
A C0P1 Time Stepping Method for Solving 2D Sine-Gordon Equations
Author(s):
Sheng Huashan
School of Mathematical Sciences,Shanghai Jiao Tong University,Shanghai 200240,China
Keywords:
time stepping methodsine-Gordon equationslinear interpolationfull-discrete scheme
PACS:
O24
DOI:
10.3969/j.issn.1001-4616.2017.01.001
Abstract:
This paper proposes a continuous piecewise linear(called C0P1 for short)time stepping method[1] combined with local linearization for solving 2D sine-Gordon equations. First of all,the sine-Gordon equations are discretized in time direction by a linear continuous Galerkin method combined with the explicit or implicit local linearization,leading to a semi-discrete scheme. Furthermore,a full-discrete scheme is obtained by spatial discretization with the finite element method[2]. Several numerical experiments are given to perform the effectiveness of the method.

References:

[1] LAI J,HUANG J. An adaptive linear time stepping algorithm for second-order linear evolution problems[J]. Int J Numer Anal Mod,2015(12):230-253.
[2]BRENNER S,SCOTT L R. The mathematical theory of finite element methods[M]. 3rd. New York:Springer,2008.
[3]BOUR E. Theorie de la deformation des surfaces[J]. J ecole imperiale polytechnique,1862,19:1-48.
[4]ZAGRODZINSKY J. Particular solutions of the sine-Gordon equation in 2+1 dimensions[J]. Phys Lett A,1979,72:284-286.
[5]WAZWAZ A M. Exact solutions for the generalized sine-Gordon and the generalized sinh-Gordon equations[J]. Chaos solitons fractals,2006,28:127-135.
[6]CHRISTIANSEN P,LOMDAHL P. Numerical study of 2+1 dimensional sine-Gordon solitons[J]. Physica D,1981(2):482-494.
[7]GUO B,PASCUAL P,RODRIGUEZ M,et al. Numerical solution of the sine-Gordon equation[J]. Appl Math Comput,1986,18:1-14.
[8]MIRZAEI D,DEHGHAN M. Meshless local Petrov-Galerkin(MLPG)approximation to the two dimensional sine-Gordon equation[J]. J Comput Appl Math,2010,233:2 737-2 754.
[9]Dehghan M,Abbaszadeh M,Mohebbi A. An implicit RBF meshless approach for solving the time fractional nonlinear sine-Gordon and Klein-Gordon equations[J]. Eng Anal Bound Elem,2015,50:412-434.

Memo

Memo:
-
Last Update: 1900-01-01