|Table of Contents|

Outgassing Analysis of the CNTs Field Emission Devicesand Its Influence on Field Emission Performance(PDF)

《南京师范大学学报》(自然科学版)[ISSN:1001-4616/CN:32-1239/N]

Issue:
2017年01期
Page:
151-
Research Field:
·物理学·
Publishing date:

Info

Title:
Outgassing Analysis of the CNTs Field Emission Devicesand Its Influence on Field Emission Performance
Author(s):
Cui Yunkang1Di Yunsong2Chen Jing3Tang Chunhong1
(1.Department of Mathematics and Physics,Nanjing Institute of Technology,Nanjing 211167,China)(2.School of Physics and Technology,Nanjing Normal University,Nanjing 210023,China)(3.School of Electronic Science and Engineering,Southeast University,Nanjing
Keywords:
carbon nanotubeoutgassing characteristicsfield emission
PACS:
O462.4
DOI:
10.3969/j.issn.1001-4616.2017.01.022
Abstract:
To study the mechanism of current degradation of a cold cathode,the ougassing analysis of a field emission diode with screen-printed carbon nanotubes(CNTs)cathode has been taken with a quadrupole mass spectrometer(QMS)in an ultra-high vacuum(UHV)system. It was found that H2,CO2 and CO were outgassed from the diode during the working process. The partial pressure of outgassing increases with the increased emission current density. The field emission properties of the cold cathode,such as turn-on field,threshold field and the emission current density,were largely related to the pressure of the outgases. After the CNTs cathode had 1.5 hour field emission operation at 2.1×10-3 Pa total pressure,the turn-on field and threshold field increased 29.4% and 50.0% respectively compared with their original values. Due to the outgassing,the work function of CNTs cold cathode increased,while the field enhancement factor decreased. Increasing the work function and reducing the field enhancement factor decrease the field emission characteristics of the cathode. Therefore,the outgassing plays very important role in the current degradation for the field emission devices.

References:

[1] IIJIMA S. Helical microtubules of graphitic carbon[J]. Nature,1991,354:56-58. DOI:10.1038/354056a0.
[2]SREEKANTH M,GHOSH S,BISWAS P,et al. Improved field emission from indium decorated multi-walled carbon nanotubes[J]. Appl Surf Sci,2016,383:84-89. DOI:10.1016/j.apsusc.2016.04.170.
[3]JEONG J W,KANG J T,CHOI S Y,et al. A digital miniature x-ray tube with a high-density triode carbon nanotube field emitter[J]. Appl Phys Lett,2013,102(2):023504. DOI:10.1063/1.4776222.
[4]SARAVANAN A,HUANG B R,YEH C J,et al. Low temperature synthesis of diamond-based nano-carbon composite materials with high electron field emission properties[J]. Appl Phys Lett,2015,106(23):231602. DOI:10.1063/1.4922370.
[5]DONG C K,LUO H J,CAI J Q,et al. Hydrogen sensing characteristics from carbon nanotube field emissions[J]. Nanoscale,2016,8(10):5 599-5 604. DOI:10.1039/c5nr08661b.
[6]MOREV S P,ABAN’SHIN N P,GORFINKEL’ B I,et al. Electron-optical systems with planar field-emission cathode matrices for high-power microwave devices[J]. J Commun Technol Electron. 2013,58(4):357-365. DOI:10.1134/S1064226913040116.
[7]SHE J C,XU N S,DENG S Z,et al. Vacuum breakdown of carbon-nanotube field emitters on a silicon tip[J]. Appl Phys Lett,2003,83:2 671-2 673. DOI:10.1063/1.1614437.
[8]XU N S,HUQ S E. Novel Cold cathode materials and applications[J]. Mater Sci Eng R-Rep,2005,48:47-189. DOI:10.1016/j.mser.2004.12.001.
[9]DEAN K A,BURGIN T P,CHALAMALA B R. Evaporation of carbon nanotubes during electron field emission[J]. Appl Phys Lett,2001,79(12):1 873-1 875. DOI:10.1063/1.1402157.
[10]LI Z,WANG C Y. First-principles study of field emission properties of gas adsorption on the carbon nanotube[J]. Chem Phys,2006,330:417-422. DOI:10.1016/j.chemphys.2006.09.014.
[11]薛增泉,吴全德. 电子发射与电子能谱[M]. 北京:北京大学出版社,1993:60-79.
[12]SHEN Y,ZHANG H,XIA L S,et al. Vacuum outgassing behavior of carbon nanotube cathode with high-intensity pulsed electron emission[J]. Plasma Sci Technol,2015,17(2):129-133. DOI:10.1088/1009-0630/17/2/06.
[13]FOMANI A A,GUERRERA S A,VELASQUEZ G L F,et al. Toward amp-level field emission with large-area arrays of Pt-coated self-aligned gated nanoscale tips[J]. IEEE Trans Electron Devices,2014,61(7):2 538-2 546. DOI:10.1109/TED.2014.2322518.
[14]CAI D,LIU L,JU J C,et al. Comparative study on intense emission of velvet and carbon nanotube cathode[J]. Acta Phys Sin,2016,65(4):045202. DOI:10.7498/aps.65.045202.
[15]刘学悫. 阴极电子学[M]. 北京:科学出版社:1980:30-37.
[16]CHEPUSOV A,KOMARSKIY A,KUZNETSOVV. The influence of ion bombardment on emission properties of carbon materials[J]. Appl Surf Sci,2014,306:94-97. DOI:10.1016/j.apsusc.2014.03.188.
[17]LIANG F,CHEN P,ZHAO D G,et al. Investigation of breakdown mechanism during field emission process of AlN thin film microscopic cold cathode[J]. J Vac Sci Technol B,2016,34(1):012201. DOI:10.1116/1.4936383.
[18]REN Z F,HUANG Z P,XU J W,et al. Synthesis of large arrays of well-aligned carbon nanotubes on glass[J]. Science,1998,282(5391):1 105-1 107. DOI:10.1126/science.282.5391.1105.
[19]YEMINI R,MUALLEM M,SHARABANI T,et al. Patterning of forests of carbon nanotubes(CNTs)using copper overlayers as iron catalyst deactivators[J]. J Phys Chem C,2016,120(22):12 242-12 248. DOI:10.1021/acs.jpcc.6b01676.
[20]GHAHARPOUR F,BAHARI A,ABBASI M,et al. Parametric investigation of CNT deposition on cement by CVD process[J]. Constr Build Mater,2016,113:523-535. DOI:10.1016/j.conbuildmat.2016.03.080.
[21]CUI Y K,ZHANG X B,LEI W,et al. Effect of ion bombardment on the field emission property of tetrapod ZnO[J]. J Appl Phys,2010,107:054506. DOI:10.1063/1.3319655.
[22]冯焱,李得天. 四极质谱计在真空检漏中的应用[J]. 真空,2006,43(3):45-47. DOI:10.13385/j.cnki.vacuum.2006.03.014.
[23]胡汉泉,王迁同. 真空物理与技术及其在电子器件中的应用(下册)[M]. 北京:国防工业出版社,1982:39-61.
[24]FOWLER R H,NORDHEIM L W. Electron emission in intense electric fields[J]. Proc Roy Soc,1928,A119:173-181. DOI:10.1098/rspa.1928.0091.
[25]CUI Y K,CHEN J,ZHAO D W,et al. Stable field emission lamps based on well-aligned BaO nanowires[J]. RSC Adv,2014,4(42):22 246-22 250. DOI:10.1039/c4ra00164h.
[26]王金婵. 纳米材料与环境气体相互作用的研究[D]. 南京:东南大学电子科学与技术学院,2009:65-85.

Memo

Memo:
-
Last Update: 1900-01-01