|Table of Contents|

The mRNA Expression of Keratin Genes in EmbryonicDevelopment of Gekko japonicus(PDF)

《南京师大学报(自然科学版)》[ISSN:1001-4616/CN:32-1239/N]

Issue:
2019年02期
Page:
99-104
Research Field:
·生命科学·
Publishing date:

Info

Title:
The mRNA Expression of Keratin Genes in EmbryonicDevelopment of Gekko japonicus
Author(s):
Chen MingyueWang FeifeiLi PengYan JieZhou Kaiya
School of Life Sciences,Nanjing Normal University,Jiangsu Key Laboratory for Biodiversity and Biotechnology,Nanjing 210023,China
Keywords:
Gekko japonicusα-keratonβ-keratonmRNA expression
PACS:
Q951+3
DOI:
10.3969/j.issn.1001-4616.2019.02.016
Abstract:
Reptile epidermis contains two types of keratins—α-keratins and β-keratins. Up to date,α-keratins are reported to be present in all vertebrates,while β-keratins are only found in birds and reptiles. In the present study,two keratin genes of Gekko japonicus were identified from the National Center of Biotechnology Information database,one β-keratin gene,G.japonicus claw keratin-like(LOC107121854)tentatively named ge-gprp-13 and one α-keratin gene,G.japonicus keratinocyte associated protein 2(KRTCAP2)tentatively named ge-krtcap2. The mRNA expression of keratin genes during embryonic development of the gecko was studied by using fluorescence quantitative real-time PCR. The results showed that the α-keratin gene(ge-krtcap2)and the β-keratin gene(ge-gprp-13)have different expression patterns in different stages of embryonic development of the gecko. In the early stage of toe development,the α-keratin gene is expressed first,while the β-keratin gene is mainly expressed in the later stage of toe development. And during the formation of the toe,the expression level of the β-keratin gene is much higher than the α-keratin gene.

References:

[1] ALIBARDI L. Cell biology of adhesive setae in gecko lizards[J]. Zoology,2009,112(6):403-424.
[2]SAWYER R H,GLENN T,FRENCH J O,et al. The expression of beta(β)keratins in the epidermal appendages of reptiles and birds[J]. American zoologist,2000,40(4):530-539.
[3]ALIBARDI L,SAWYER R H. Immunocytochemical analysis of beta keratins in the epidermis of chelonians,lepidosaurians,and archosaurians[J]. The journal of experimental zoology,2002,293(1):27-38.
[4]ALIBARDI L. Immunolocalization of specific keratin associated beta-proteins(beta-keratins)in the adhesive setae of Gekko gecko[J]. Tissue and cell,2013,45(4):231-240.
[5]GREENWOLD M J,SAWYER R H. Linking the molecular evolution of avian beta(beta)keratins to the evolution of feathers[J]. Journal of experimental zoology part b,molecular and developmental evolution,2011,316(8):609-616.
[6]STEINERT P M. Structure,function,and dynamics of keratin intermediate filaments[J]. The journal of investigative dermatology,1993,100(6):729-734.
[7]COULOMBE P A,OMARY M B.‘Hard’and‘soft’principles defining the structure,function and regulation of keratin intermediate filaments[J]. Current opinion in cell biology,2002,14(1):110-122.
[8]FUCHS E,CLEVELAND D W. A structural scaffolding of intermediate filaments in health and disease[J]. Science,1998,279(5350):514-519.
[9]WYLD J A,BRUSH A H. The molecular heterogeneity and diversity of reptilian keratins[J]. Journal of molecular evolution,1979,12(4):331-347.
[10]ALIBARDI L. Ultrastructural autoradiographic and immunocytochemical analysis of setae formation and keratinization in the digital pads of the gecko Hemidactylus turcicus(Gekkonidae,Reptilia)[J]. Tissue and cell,2003,35(4):288-296.
[11]ALIBARDI L,TONI M. Cytochemical,biochemical and molecular aspects of the process of keratinization in the epidermis of reptilian scales[J]. Progress in histochemistry and cytochemistry,2006,40(2):73-134.
[12]计翔,王培潮. 多疣壁虎卵的孵化特征[J]. 动物学研究,1991(1):28-72.
[13]计翔,王培潮. 温度对多疣壁虎摄食量和同化效率的影响[J]. 杭州师范学院学报(自然科学版),1990(6):90-94.
[14]计翔,王培潮,洪卫星. 多疣壁虎的繁殖生态研究[J]. 动物学报,1991(2):185-192.
[15]赵若男,张黎悦,吴鹏飞,等. 多疣壁虎胚胎发育分期的形态学特征[J]. 动物学杂志,2017,52(6):987-995.
[16]朱灵君,胡凌君,张永普,等. 不同多疣壁虎种群繁殖特征的比较[J]. 生态学杂志,2009,28(4):692-697.
[17]许雪峰,计翔. 多疣壁虎的雌性繁殖及孵化温度对孵化期和孵出幼体特征的影响[J]. 生态学杂志,2001(6):8-11.[18]LIVAK K J,SCHMITTGEN T D. Analysis of relative gene expression data using realtime quantitative PCR and the 2-ΔΔCt Method[J]. Methods,2001,25:402-408.
[19]ALIBARDI L,TONI M. Cytochemical and molecular characteristics of the process of cornification during feather morphogenesis[J]. Progress in histochemistry and cytochemistry,2008,43(1):1-69.
[20]ALIBARDI L,MICHIELI F,DALLA VALLE L. Low-cysteine alpha-keratins and corneous beta-proteins are initially formed in the regenerating tail epidermis of lizard[J]. Journal of morphology,2017,278(1):119-130.
[21]ALIBARDI L,YHOMPSON M B. Fine structure of the developing epidermis in the embryo of the American alligator(Alligator mississippiensis,Crocodilia,Reptilia)[J]. Journal of anatomy,2001,198(Pt 3):265-282.
[22]ALIBARDI L,YHOMPSON M B. Keratinization and ultrastructure of the epidermis of late embryonic stages in the alligator(Alligator mississippiensis)[J]. Journal of anatomy,2002,201(1):71-84.
[23]WU P,NG C S,YAN J,et al. Topographical mapping of alpha- and beta-keratins on developing chicken skin integuments:functional interaction and evolutionary perspectives[J]. Proceedings of the national academy sciences of the United States of America,2015,112(49):E6770-9.
[24]DALLA V L,NARDI A,TOFFOLO,et al. Cloning and characterization of scale beta-keratins in the differentiating epidermis of geckoes show they are glycine-proline-serine-rich proteins with a central motif homologous to avian beta-keratins[J]. Developmental dynamics,2007,236(2):374-388.

Memo

Memo:
-
Last Update: 2019-06-30