|Table of Contents|

Design of Air Pressure Control System for Multi-materialBiological 3D Printing Equipment(PDF)

《南京师大学报(自然科学版)》[ISSN:1001-4616/CN:32-1239/N]

Issue:
2020年02期
Page:
23-28
Research Field:
·物理学·
Publishing date:

Info

Title:
Design of Air Pressure Control System for Multi-materialBiological 3D Printing Equipment
Author(s):
Cui Meng12Tang Hao23Yang Shuai23Shi Jianping23
(1.College of Mechanical Engineering,Yangzhou University,Yangzhou 225127,China)(2.Jiangsu Key Laboratory of 3D Printing Equipment & Manfacturing,Nanjing Normal University,Nanjing 210023,Chinaa)(3.College of Electrical and Automation Engineering,Nanjing Normal University,Nanjing 210023,Chin)
Keywords:
single-chip microcomputerproportional modulation valve3D printingserial touch screen
PACS:
TP23
DOI:
10.3969/j.issn.1001-4616.2020.02.005
Abstract:
In order to meet the application requirements of the integrated molding of multi-material biological 3D printing,it is necessary to drive the multi-material spray extrusion system accurately. Based on this,this research designs and makes a kind of air pressure control system based on the proportional modulation valve. The system sets the air pressure through the touch screen,processes the set value by the single-chip microcomputer and transmits it to the proportional modulation valve for air pressure modulation,then uses the acquisition module of the air pressure sensor for data collection,and displays the real-time air pressure through the serial screen. The system can accurately adjust and monitor the air pressure of the nozzle under the working condition by designing the relevant processing circuit and writing the data processing algorithm. The test shows that the designed multichannel air pressure acquisition system can not only meet the requirements of the pressure monitoring for the multi material biological 3D printing system,but also provide a good display interface solution for the relevant experimental platform or control equipment.

References:

[1] 贺永,高庆,刘安,等. 生物3D打印——从形似到神似[J]. 浙江大学学报(工学版),2019,53(3):6-18.
[2]吕超凡,朱莉娅,李客楼,等. 3D打印在软骨组织损伤修复中的应用进展[J]. 南京师范大学学报(工程技术版),2017,17(1):12-17.
[3]杜显彬,徐铭恩,王玲,等. 基于同轴流技术的肝组织生物3D打印研究[J]. 中国生物医学工程学报,2018,37(6):94-101.
[4]石静,钟玉敏. 组织工程中3D生物打印技术的应用[J]. 中国组织工程研究,2014,18(2):271-276.
[5]王镓垠,柴磊,刘利彪,等. 人体器官3D打印的最新进展[J]. 机械工程学报,2014,50(23):119-127.
[6]LIAO J,WANG S,CHEN J,et al. Progress in application of 3D bioprinting in cartilage regeneration and reconstruction for tissue engineering[J]. Journal of Central South University,2017,42(2):221-225.
[7]谷龙. 面向皮肤组织工程的水凝胶与细胞打印研究[D]. 杭州:浙江大学,2017.
[8]王玲,方奥,申皓,等. 3D打印的发展前沿——类脑组织打印[J]. 机械工程学报,2018,54(1):198-204.
[9]钟世镇. 医用3D打印技术的探索[J]. 中华创伤骨科杂志,2017,19(2):138-139.
[10]潘湘斌. 3D打印技术在心脏领域的应用前景和挑战[J]. 中华医学杂志,2017,97(16):1201-1203.
[11]左进富,孙淼,韩宁宁,等. 3D生物打印在组织工程中的应用[J]. 组织工程与重建外科杂志,2019(3):201-203.
[12]毛伟,连芩,李涤尘,等. 立体空心血管网水凝胶支架的3D打印工艺研究[J]. 机械工程学报,2017(9):180-186.
[13]陈鑫,李方正. 生物3D打印技术的应用现状和发展趋势[J]. 新材料产业,2017(11):2-4.
[14]施建平,杨继全,王兴松. 多材料零件3D打印技术现状及趋势[J]. 机械设计与制造工程,2017,46(2):11-17.
[15]刘志浩,杨建军,赵佳伟,等. 电场驱动喷射高粘度导电材料的3D打印机理研究[J]. 机械科学与技术,2019,38(3):123-129.
[16]孙超林,王鑫,李前,等. STM32的环保型便携式3D打印机研制[J]. 单片机与嵌入式系统应用,2017(17):62.
[17]杨亮,傅瑜,邓春健,等. 基于嵌入式平台3D打印机研制[J]. 实验技术与管理,2015,32(12):89-92.
[18]欧攀,刘泽阳,高汉麟,等. 基于柔性材料的双喷头3D打印技术研究[J]. 工具技术,2019,53(5):26-30.
[19]江郑龙,刘媛媛,李瑜,等. 自动化控制的转盘式气动多喷头生物3D打印成形系统及方法:CN201410162181-8[P]. 2014-04-22,2014.
[20]丁争荣,陶凯,邓圭玲. 基于AT89C52单片机的喷射点胶控制系统[J]. 制造业自动化,2010(3):55-56,121.
[21]渠淼. 基于 Arduino 的智能环境监控系统设计[J]. 微型机与应用,2014,33(20):83-85.
[22]张炳权,田思庆,吴迪,等. 基于 Arduino/Android的养殖场环境监控系统设计[J]. 安徽农业科学,2017,45(1):209-211,214.
[23]石从刚,崔连涛,宋剑英. 基于Arduino uno和nRF24L01的无线温度测试仪的设计[J]. 仪表技术,2016(10):4-6.

Memo

Memo:
-
Last Update: 2020-05-15