[1]浦志勤.解线性变分不等式问题的一个简单交替方向法(英文)[J].南京师大学报(自然科学版),2007,30(03):21-25.
 Pu Zhiqin.A Simple Alternating Direction Method for Linear Variational Inequality Problems[J].Journal of Nanjing Normal University(Natural Science Edition),2007,30(03):21-25.
点击复制

解线性变分不等式问题的一个简单交替方向法(英文)()
分享到:

《南京师大学报(自然科学版)》[ISSN:1001-4616/CN:32-1239/N]

卷:
第30卷
期数:
2007年03期
页码:
21-25
栏目:
数学
出版日期:
2007-09-30

文章信息/Info

Title:
A Simple Alternating Direction Method for Linear Variational Inequality Problems
作者:
浦志勤;
南京师范大学数学与计算机科学学院 江苏南京210097
Author(s):
Pu Zhiqin
School of Mathematics and Computer Science,Nanjing Normal University,Nanjing 210097,China
关键词:
交替方向法 线性变分不等式 全局收敛
Keywords:
altern at ing d irect ion m ethod linear var iational inequal ity p rob lem global convergence
分类号:
O178
摘要:
解变分不等式的交替方向法每一步需要解一个(几个)变分不等式子问题,算法的有效性受这些子问题的影响很大.本文提出了一个解线性变分不等式的简单的交替方向法.在每一步迭代中,只需要做矩阵-向量乘法和到简单集合的投影,使得算法的效率得到保证.在适当的条件下证明了算法的全局收敛性.初步的数值结果表明,我们的新算法较原有同类算法有所改进.
Abstract:
The alternat ing d irectionm ethods for so lving variational in equality problem s n eeds to solve several subprob lem s, wh ich are also variational inequ alities. Thu s, the ef ficiency of th is type ofm ethod s is in fluenced by the m ethod s for solving the subprob lem s. In th is paper, w e p ropose a sim ple alternating d irection m ethod. It need s on ly to perform som e m atrix- vector p roduct ions and project ion on to a sim p le set. Under m ild assum p tion, w e show the global conver gence of the m ethod. Som e prelim inary com putational resu lts are reported, show ing th e efficiency of the proposedm eth od.

参考文献/References:

[ 1] H e B S, Zhou J. A mod ified alterna tion direction me thod fo r convex m in im ization prob lem s[ J]. AppliedM athem atics Letters, 2000, 13( 1): 122-130.
[ 2]  A rrow K J, H urw icz L, U zaw aH. Stud ies in Linear and Nonlinea rProg ramm ing[M ]. Ca lifornia: Stan fo rd Un iversity Press, 1958.
[ 3]  Gabay D, M erc ier B. A dual a lgor ithm for the so lution of non linear va riational problem s v ia finite-elem en t approx im ations [ J] . Computers andM athem atics w ith Applications, 1976, 2( 1): 17-40.
[ 4]  Fo rtinM, G low insk i R. Augm ented Lagrang ianM ethods: Applications to the So lution of Boundary-Valued Problem s[M ]. Am ste rdam: North H o lland Publish ing Co,1983.
[ 5]  G low inski R. Num er ica lM ethods fo rNon linearV ariationa l Problem s[M ]. N ew York: Springer-Verlag, 1984.
[ 6]  G low insk iR, Le P Ta llec. Augm ented Lagrang ian and operator-splitting m ethod in nonlinea rmechan ics[ C ] / / SIAM Studies in App liedM a them atics. Ph ilade lph ia: PA, 1989.
[ 7]  NagurneyA. Netw ork E conom ics, A Var iationa l InequalityApproach[M ]. Do rdrecht: K luw erA cadem ic, 1993.
[ 8]  H an D R, H ong K Lo. A new stepsize ru le in H e and Zhou s’ a lternating direction m ethod[ J]. App liedM athem atics Letters, 2002, 15: 181-185.
[ 9]  H ou L S, SunW Y. Three-Term Precond itioned Con jug ate G radientM ethod and Trust Reg ion Subproblem [ J] . Journal o f Nanjing Norm al University: Natural Science Ed ition, 2001, 24( 3) : 1-6.
[ 10]  Kojim aM, Sh indo S. Ex tens ions of New ton and quasi-New ton m ethods to sy stem s o fPC1 equa tions[ J] . Journa l o f Operations Research Soc ie ty of Japan, 1986, 29: 352-374.
[ 11]  So lodovM V, T seng P. M odified Pro jection-typem ethods form ono tone inequa lities[ J]. S IAM Journal on Contro l and Opti m ization, 1996, 34: 1 814-1 830.
[ 12]  So lodov M V, Svaiter B F. A new pro jection m ethod fo r v ariational inequality prob lem s[ J] . SIAM Journa l on Con tro l and Op tim ization, 1999, 37: 765-776.

备注/Memo

备注/Memo:
Biography: Pu Zh iq in, born in 1965, lecturer, m ajored in theory and app licat ion of opt im ization. E-m ail:puzh iq in@ n jnu. edu. cn
更新日期/Last Update: 2013-05-05