参考文献/References:
[ 1]Jaff C, Brum er P. Loca l and no rm al modes: a class ica l perspec tive [ J]. J Chem Phy s, 1980, 73( 11): 5 646-5 658.
[ 2]Li Z, X iao L, Ke llm anM E. Phase space bifurcation struc ture and the genera lized lo ca-l to-norm a l transition in resonan tly coup led v ibrations[ J]. J Chem Phys, 1990, 92( 4): 2 251-2 268.
[ 3]X iao L, K ellm anM E. C atastrophe m ap class ification o f the g eneralized norm a-l local transition in Ferm i resonance spectra [ J] . J Chem Phys, 1990, 93( 8) : 5 805-5 820.
[ 4]Ke llmanM E, X iao L. N ew ass ignm ent o f Ferm i resonance spectra[ J]. J Chem Phys, 1993, 93( 8): 5 821-5 825.
[ 5]M ackay R S, M eiss J D, Percival IC. T ransport in H am iltonian system [ J]. Physica, 1984, D13( 1) : 55-81.
[ 6]M ackay R S, M eiss J D, Percival IC. Resonance in area preserv ing m aps[ J]. Physica, 1987, D27( 1) : 1-20.
[ 7]Law ton R T, Ch ildM S. Loca l and no rm al stretching v ibrationa l sta te ofH 2O [ J]. M o l Phy s, 1981, 44( 3): 709-723.
[ 8]Dav isM J, H elle r E J. Quantum dynam ica l tunne ling in bound sta te[ J]. J Chem Phys, 1981, 75( 1): 246-255.
[ 9]Y ang S, Kellm anM E. Sem ic lassica lw ave function in the chaotic reg ion from a quantizing cantorus[ J]. Chem Phy s, 2006, 322( 1) : 30-40.