[1]杨双波.量子环波函数(英文)[J].南京师大学报(自然科学版),2010,33(03):32-39.
 Yang Shuangbo.Quantum Torus Wave Function[J].Journal of Nanjing Normal University(Natural Science Edition),2010,33(03):32-39.
点击复制

量子环波函数(英文)()
分享到:

《南京师大学报(自然科学版)》[ISSN:1001-4616/CN:32-1239/N]

卷:
第33卷
期数:
2010年03期
页码:
32-39
栏目:
物理学
出版日期:
2010-09-20

文章信息/Info

Title:
Quantum Torus Wave Function
作者:
杨双波;
南京师范大学物理科学与技术学院, 江苏南京210046
Author(s):
Yang Shuangbo
School of Physics and Technology,Nanjing Normal University,Nanjing 210046,China
关键词:
康托环 命名 动力学遂穿
Keywords:
torus canto rus assignment dynam ical tunne ling
分类号:
O413.1
摘要:
对两个动能耦合的全同Morse振子系统引入了量子环波函数的概念.量子环波函数来源于一个系统量子态的分解,反映量子波函数的对称性.物理上对应于相空间中的一个量子化环或量子化康托环(如存在的话).等高线图中沿x轴和y轴的节点数目,与EBK量子化条件中量子数相同,是给定能级的自然命名.当量子化环或量子化康托环被相空间中弱谐振带破坏时,用量子环波函数命名能级更容易,也是合理的.这篇文章也显示了量子环波函数在研究动力学遂穿的潜在应用.
Abstract:
Fo r two k inetica lly coup led identica lM orse oscillator system, th is paper introduced the concept o f quantum torus w ave function. Quantum to rus w ave function com es from the decom position o f a quantum w ave func tion of the system. It re flects the symm etry of the quantum w ave function. Physically, it co rresponds to a quantizing torus o r a quant-i zing can to rus ( when it ex ists) in phase space. The number o f nodes in x and y coord inates in the contour p lot, be ing the sam e as the quantum number in the E inste in-B rillou in-Ke ller ( EBK) quantization conditions, is the na tura l assignm ent o f the g iven energy leve.l W hen quantizing to rus or cantorus is destroyed by w eak resonances in phase space, using quantum torus wave func tion to assign energy leve l is easie r and reasonab le. Th is paper a lso show s the app lication o f quantum torus wave func tion in the study of dynam ical tunneling.

参考文献/References:

[ 1]Jaff C, Brum er P. Loca l and no rm al modes: a class ica l perspec tive [ J]. J Chem Phy s, 1980, 73( 11): 5 646-5 658.
[ 2]Li Z, X iao L, Ke llm anM E. Phase space bifurcation struc ture and the genera lized lo ca-l to-norm a l transition in resonan tly coup led v ibrations[ J]. J Chem Phys, 1990, 92( 4): 2 251-2 268.
[ 3]X iao L, K ellm anM E. C atastrophe m ap class ification o f the g eneralized norm a-l local transition in Ferm i resonance spectra [ J] . J Chem Phys, 1990, 93( 8) : 5 805-5 820.
[ 4]Ke llmanM E, X iao L. N ew ass ignm ent o f Ferm i resonance spectra[ J]. J Chem Phys, 1993, 93( 8): 5 821-5 825.
[ 5]M ackay R S, M eiss J D, Percival IC. T ransport in H am iltonian system [ J]. Physica, 1984, D13( 1) : 55-81.
[ 6]M ackay R S, M eiss J D, Percival IC. Resonance in area preserv ing m aps[ J]. Physica, 1987, D27( 1) : 1-20.
[ 7]Law ton R T, Ch ildM S. Loca l and no rm al stretching v ibrationa l sta te ofH 2O [ J]. M o l Phy s, 1981, 44( 3): 709-723.
[ 8]Dav isM J, H elle r E J. Quantum dynam ica l tunne ling in bound sta te[ J]. J Chem Phys, 1981, 75( 1): 246-255.
[ 9]Y ang S, Kellm anM E. Sem ic lassica lw ave function in the chaotic reg ion from a quantizing cantorus[ J]. Chem Phy s, 2006, 322( 1) : 30-40.

备注/Memo

备注/Memo:
Foundation item: Supported by Nat ionalN atural Science Foundat ion of Ch ina( 10674073 ) . Corresponding author: Yang Shuangbo, professor, m ajored in atom ic m olecu lar physics and non linear physics. E-mail:yangshuangbo@ njnu.edu. Cn
更新日期/Last Update: 2013-04-08