[1]李方洁,刘希玉,陈洁,等.基于改进蚁群算法的DNA双序列比对[J].南京师大学报(自然科学版),2010,33(04):148-152.
 Li Fangjie,Liu Xiyu,Chen Jie.DNA Pair-Wise Sequence Alignment Based on an Improved Ant Colony Algorithm[J].Journal of Nanjing Normal University(Natural Science Edition),2010,33(04):148-152.
点击复制

基于改进蚁群算法的DNA双序列比对()
分享到:

《南京师大学报(自然科学版)》[ISSN:1001-4616/CN:32-1239/N]

卷:
第33卷
期数:
2010年04期
页码:
148-152
栏目:
计算机科学
出版日期:
2010-12-20

文章信息/Info

Title:
DNA Pair-Wise Sequence Alignment Based on an Improved Ant Colony Algorithm
作者:
李方洁;刘希玉;陈洁;
山东师范大学管理与经济学院, 山东济南250014
Author(s):
Li FangjieLiu XiyuChen Jie
School of Management and Economy,Shandong Normal University,Jinan 250014
关键词:
蚁群算法 双序列比对 信息素
Keywords:
ant co lony algor ithm pa ir-w ise sequence a lignment phe romone
分类号:
TP301.6
摘要:
序列比对是生物信息学中基本的信息处理方法之一.DNA序列比对分为多序列比对和双序列比对两种.本文首先分析了经典蚁群算法在双序列比对中的应用,然后针对经典蚁群算法收敛速度慢和陷入局部最优值等缺点进行改进,最后通过实验证明改进的智能蚁群算法在收敛速度和最优值方面都有较大的改进.
Abstract:
Sequence a lignm ent is a basic inform a tion processing appro ach. DNA sequence a lignm ent has m ultip le sequence a lignm ent and pair-w ise sequence a lignm ent. Th is paper ana lyzed pa ir-w ise sequence a lignm ent based on standa rd ant co lony a lgo rithm firstly. Secondly, in o rder to accelerate the convergence and avo id the stagnation, th is paper proposed an im proved ant co lony algor ithm. Lastly, it proved tha t both convergence ra te and g lobal optim um havem uch better resu lts.

参考文献/References:

[ 1] Needlem an S B, Wunsch C D. A genera lm ethod applicable to the search for sim ilarities in the am ino acid sequences of tw o prote ins[ J]. Journa l o fM o lecular B io logy, 1970( 48): 443-453.
[ 2] Sm ith T F, W ate rmanM S. Identification o f comm on m o lecular sequences[ J]. Journal o fM o lecu lar B io logy, 1981( 147): 195-197.
[ 3] Ye Yuzhen, Adam Godzik. M u ltiple flex ible structure alignm ent using patia l o rder g raphs [ J]. B io in fo rm atics, 2005, 21 ( 10): 2 362-2 369.
[ 4] Do rigoM. Optiniza tion learn ing and natural a lgo rithm [ D]. Ita ly: Po litecnico d iM ilano, 1992.
[ 5] 王小平, 曹立明. 遗传算法-理论应用和软件实现[M ] . 西安: 西安交通大学出版社, 2002.
[ 6]段海滨. 蚁群算法原理及其应用[M ]. 北京: 科学出版社, 2005: 144-148.
[ 7] Chen Y ix in, Pan Y,i Chen Juan, et a .l M ultip le sequence a lignm ent by ant co lony optim ization and divide-and-conquer [ C] / / Bre lin: Proc o f ICCS, 2006: 646-653.
[ 8] Jangam S R, Chakrabo rtiN. A nove lm ethod fo r alignm ent o f two nucle ic acid sequences using ant co lony optim ization and genetic algorithm s[ J] . App lied So ft Com puting, 2007, 7( 3) : 1 121-1 130.
[ 9] 梁栋, 霍红卫. 自适应蚁群算法在序列比对中的应用[ J]. 计算机仿真, 2005, 22( l): 100-102.
[ 10]Ste fan Schroed.l An im proved search a lgo rithm for optim a lm ultiple sequence a lignm ent[ J]. Journa l o fA rtific ia l Inte lligence Resea rch, 2005, 23( 5) : 587-623.

相似文献/References:

[1]张丽虹.无线传感网络改进混合移动代理路由的研究[J].南京师大学报(自然科学版),2012,35(04):145.
 Zhang Lihong.Study on Improved Hybrid Mobile Agent Routing in Wireless Sensor Networks[J].Journal of Nanjing Normal University(Natural Science Edition),2012,35(04):145.
[2]朱 红,何瀚志,方谦昊,等.面向医学图像分割的蚁群密度峰值聚类[J].南京师大学报(自然科学版),2019,42(02):1.[doi:10.3969/j.issn.1001-4616.2019.02.001]
 Zhu Hong,He Hanzhi,Fang Qianhao,et al.Ant Colony Algorithm and Density Peaks Clustering forMedical Image Segmentation[J].Journal of Nanjing Normal University(Natural Science Edition),2019,42(04):1.[doi:10.3969/j.issn.1001-4616.2019.02.001]
[3]吴昌钱,黄 锐,罗志伟.基于量子蚁群算法的智能制造调度问题研究[J].南京师大学报(自然科学版),2023,46(04):74.[doi:10.3969/j.issn.1001-4616.2023.04.011]
 Wu Changqian,Huang Rui,Luo Zhiwei.Research on Intelligent Manufacturing Scheduling Problem Based on Quantum Ant Colony Algorithm[J].Journal of Nanjing Normal University(Natural Science Edition),2023,46(04):74.[doi:10.3969/j.issn.1001-4616.2023.04.011]

备注/Memo

备注/Memo:
基金项目: 山东省信息产业发展专项基金( 2008R00038) . 通讯联系人: 刘希玉, 博士, 教授, 研究方向: 计算智能、数据挖掘等. E-m ail:xyl iu@ sdnu. edu. cn
更新日期/Last Update: 2013-04-08