[1]林缨,李学平.结构多位置裂缝识别的有限元方法[J].南京师大学报(自然科学版),2012,35(01):39-45.
 Lin Ying,Li Xueping.Identification of Multi-Position Cracks in Structures Based on Finite Element Method[J].Journal of Nanjing Normal University(Natural Science Edition),2012,35(01):39-45.
点击复制

结构多位置裂缝识别的有限元方法()
分享到:

《南京师大学报(自然科学版)》[ISSN:1001-4616/CN:32-1239/N]

卷:
第35卷
期数:
2012年01期
页码:
39-45
栏目:
物理学
出版日期:
2012-03-20

文章信息/Info

Title:
Identification of Multi-Position Cracks in Structures Based on Finite Element Method
作者:
林缨;李学平;
中南大学土木工程学院,湖南长沙410075
Author(s):
Lin YingLi Xueping
School of Civil Engineering,Central South University,Changsha 410075,China
关键词:
损伤灵敏度矩阵结构裂缝单元识别结构裂缝深度算式有限元列式模态参数
Keywords:
damage sensitivity matrixidentification of structural crack elementformula of structural crack depthfinite element formulationmodal parameter
分类号:
TU312.3
摘要:
由振动系统动力方程的有限元表达形式,推导出结构损伤和模态参数间的联系,建立基于有限元的结构多位置裂缝的识别方法.本方法通过损伤灵敏度矩阵,识别结构裂缝所在的单元位置并确定裂缝的深度,计算简便.作者通过数值计算,验证了此方法的有效性.从算例结果可以看出,将结构单元适当细分,可以提高裂缝识别的精度.
Abstract:
The connection between structural damage and modal parameter was derived and the identification of multi-position cracks in structures based on finite element method was obtained by using finite element expression of vibrating system's dynamic equation. By making use of damage sensitivity matrix,it is eligible to identify exact positions of structural cracks,and the crack depths in the meanwhile. This method is simple in calculation. This method is verified by means of numerical calculations. The results show that comparatively detailed division of the structural elements may improve the identification accuracy.

参考文献/References:

[1] Salawu O S. Detection of structural damage through changes in frequency: a review[J]. Engineering Structures,1997,19 ( 9) : 718-723.
[2] Lakshmi Narayana K,Jebaraj C. Sensitivity analysis of local /global modal parameters for identification of a crack in a beam [J]. Journal of Sound and Vibration,1999,228( 5) : 977-994.
[3] Karthikeyana M,Tiwaria R,Talukda S. Crack localisation and sizing in a beam based on the free and forced response measurements [J]. Mechanical Systems and Signal Processing,2007,21: 1 362-1 385.
[4] 高芳清. 基于模态分析的结构损伤检测方法研究[J]. 西南交通大学学报, 1998,33( 1) : 108-113.
[5] Ren Weixin,Guido De Roeck. Structural damage identification using modal data I: simulation verification [J]. Journal of Structural Engineering,2002,128( 1) : 87-95.
[6] Ren Weixin,Guido De Roeck. Structural damage identification using modal data II: test verification [J]. Journal of Structural Engineering,2002,128( 1) : 96 ~ 104.
[7] 汪之松,郭惠勇,李正良. 基于频率响应的不同结构损伤识别方法研究[J]. 工程力学, 2008,25( 6) : 6-13.
[8] 徐峰,彭海阔,孟光. 基于损伤因子的板架结构损伤识别方法研究[J]. 振动与冲击, 2010,29( 12) : 22-25.
[9] Lu Q,Ren G,Zhan Y. Multiple damage location with flexibility curvature and relative frequency change for beam structures [J]. Journal of Sound and Vibration,2002,253( 5) : 1 101-1 114.
[10] Gudmunson P. Eigenfrequency. Changes of structures due to cracks,notches or other geometric changes[J]. Journal Mech Phys Solids,1982,30( 5) : 339-53.
[11] Yang X F,Swamidas A S J,Seshadri R. Crack identification in vibrating beam using the energy method[J]. Journal of Sound and Vibration,2001,244( 2) : 339-357.

备注/Memo

备注/Memo:
通讯联系人:李学平,博士,副教授,研究方向: 结构损伤识别. E-mail: lixueping@ mail. csu. edu. cn
更新日期/Last Update: 2013-03-11