[1]杨双波,韦栋.周期受击简谐振子系统的经典动力学与准能谱统计[J].南京师大学报(自然科学版),2012,35(03):37-42.
 Yang Shuangbo,Wei Dong.Classical Dynamics and Quasi-Energy Spectral Statistics of a Periodically Kicked Harmonic Oscillator[J].Journal of Nanjing Normal University(Natural Science Edition),2012,35(03):37-42.
点击复制

周期受击简谐振子系统的经典动力学与准能谱统计()
分享到:

《南京师大学报(自然科学版)》[ISSN:1001-4616/CN:32-1239/N]

卷:
第35卷
期数:
2012年03期
页码:
37-42
栏目:
物理学
出版日期:
2012-09-20

文章信息/Info

Title:
Classical Dynamics and Quasi-Energy Spectral Statistics of a Periodically Kicked Harmonic Oscillator
作者:
杨双波;韦栋;
南京师范大学物理科学与技术学院,江苏南京210046
Author(s):
Yang ShuangboWei Dong
School of Physics and Technology,Nanjing Normal University,Nanjing 210046,China
关键词:
混沌准能量最近邻间距分布谱刚度高阶矩
Keywords:
chaosquasienergynearest neighbor spacing distributionspectral rigidityhigher moment
分类号:
O413.1
摘要:
研究一个周期受击简谐振子系统在非谐振情况下的经典动力学与准能谱统计.研究发现,随着打击强度κ的增加,经典相空间结构从可积(环)到完全混沌时,准能谱按最近邻能级间距分布仍保持Poisson分布不变,这与周期受击转子系统的结果相同.谱刚度的计算表明,除了κ=30的情况外,κ=0.13、1.6、2.0、2.6等的谱刚度在L<0.1的范围内随L线性变化,呈束状;在L>0.1以后发散开来,呈非线性变化,且κ=0.13的谱刚度趋于饱和.数方差Σ2及高阶矩γ1,γ2随κ的变化不敏感.
Abstract:
This paper studies the classical dynamics and quasienergy spectral statistics for a periodically kicked Harmonic oscillator system,under the nonresonance condition. It is found that as we increase the kicking strength κ,and the phase space structure starts from tori for integrable system to completely chaotic for nonintegrable system, the nearest neighbor spacing distribution for the quasienergy spectral keeps the Poissonian distribution,and this is similar to that of the periodically kicked free rotor. The result of spectral rigidities shows that except the case of κ = 30,the rigidities for κ = 0. 13, 1. 6, 2. 0, 2. 6,bunched,increase linearly with L for L < 0. 1,and spread,increase nonlinearly with L,and the rigidity for κ = 0. 13 tends to saturation for L > 0. 1. The number variance Σ2 ,skewness γ1 ,excess γ2 are not sensitive to the change of κ.

参考文献/References:

[1] Casati G,Chirikov B V,Ford J,et al. Stochastic behavior of a quantum pendulum under periodic perturbation[J]. Lect Notes Phys, 1979,93: 334-352.
[2] Wintgen D,Marxer H. Level statistics of a quantized cantori system[J]. Phys Rev Lett, 1988,60: 971-974.
[3] Kilbane D,Cummings A,O’Sullivan G,et al. Quantum statistics of a kicked particle in an infinite potential well[J]. Chaos, Solitons and Fractals,2006,30: 412-423.
[4] Heller E J,O’Connor P W,Gehlen J. The eigenfunctions of classical chaostic systems[J]. Physica Scripta, 1989,40: 354- 359.
[5] 杨双波,韦栋. 周期受击简谐振子系统的经典与量子动力学[J]. 南京师大学报: 自然科学版, 2011, 34( 4) : 49-54.
[6] Izrailev F M. Simple models of quantum chaos: spectrum and eigenfunctions[J]. Phys Rep,1990,196: 299-399.
[7] Casti G,Chirikov B V,Guarneri I. Energy-level statistics of integrable quantum systems[J]. Phys Rev Lett,1985,54: 1 350-1 353.
[8] Honig A,Wintgen D. Spectral properties of strongly perturbed Coulomb systems: fluctuation properties[J]. Phys Rev A, 1989,39: 5 642-5 656.
[9] 汪昭,杨双波. 势阱中的混沌及量子对应[J]. 南京师大学报: 自然科学版, 2009,32( 3) : 31-36.

相似文献/References:

[1]杨双波,韦栋.周期受击简谐振子系统的经典与量子动力学[J].南京师大学报(自然科学版),2011,34(04):49.
 Yang Shuangbo,Wei Dong.Classical and Quantum Dynamics of a Periodically Kicked Harmonic Oscillator[J].Journal of Nanjing Normal University(Natural Science Edition),2011,34(03):49.
[2]刘扬正,李平.利用间歇非线性时滞反馈控制一维Logistic系统的混沌运动[J].南京师大学报(自然科学版),2002,25(03):53.
 Liu Yangzheng,Li Ping.The Chaotic Control of Logistic Map Based on the Occasional Nonlinear Time-delayed Feedback[J].Journal of Nanjing Normal University(Natural Science Edition),2002,25(03):53.
[3]刘扬正,李平.利用间歇非线性时滞反馈控制一维Logistic系统的混沌运动[J].南京师大学报(自然科学版),2002,25(04):53.
 Liu Yangzheng,Li Ping.The Chaotic Control of Logistic Map Based on the Occasional Nonlinear Time-delayed Feedback[J].Journal of Nanjing Normal University(Natural Science Edition),2002,25(03):53.

备注/Memo

备注/Memo:
通讯联系人: 杨双波,博士,教授,研究方向: 量子混沌. E-mail: yangshuangbo@ njnu. edu. cn
更新日期/Last Update: 2013-03-11