[1]曹丽娜,刘 红.势垒中粒子波包的运动[J].南京师大学报(自然科学版),2013,36(03):37-41.
 Cao Lina,Liu Hong.Wave Packet Dynamics of Particles in Potential Barriers[J].Journal of Nanjing Normal University(Natural Science Edition),2013,36(03):37-41.
点击复制

势垒中粒子波包的运动()
分享到:

《南京师大学报(自然科学版)》[ISSN:1001-4616/CN:32-1239/N]

卷:
第36卷
期数:
2013年03期
页码:
37-41
栏目:
物理学
出版日期:
2013-09-30

文章信息/Info

Title:
Wave Packet Dynamics of Particles in Potential Barriers
作者:
曹丽娜刘 红
南京师范大学物理科学与技术学院,江苏 南京 210023
Author(s):
Cao LinaLiu Hong
School of Physics and Technology,Nanjing Normal University,Nanjing 210023,China
关键词:
薛定谔方程波包递推迭代透射率
Keywords:
Schrödinger equationwave packetrecursive iterativetransmission
分类号:
O413.1
摘要:
本文用高斯波包对粒子的运动进行描述,通过数值求解含时薛定谔方程对二维电子气中波包的运动进行研究.通过对不同能量时波包透射性的研究,阐明了其粒子性和波动性.在我们的工作中,波包宽度不同,透射率与能量的关系不同.
Abstract:
We use Gauss wave packet to describe the dynamics of charged particle in a limited two-dimensional electron gas by sloving time-dependent Schrödinger equation.The particle character and wave character of wave packet with different energy are illustrated by the transmission of wave packet.In the present work,for different wave packet width the transmission shows different relationship with the input energy.

参考文献/References:

[1] Rakhimov K Y,Chaves A,Farias G A,et al.Wavepacket scattering of Dirac and Schrodinger particles on potential and magnetic barriers[J].Phys:Conden Matter,2011,23:275 801(1-16).
[2]Chave A,Farias G A,Peeters F M,et al.Wave packet dynamics in semiconductor quantum rings of finite width[J].Physical Review B,2009,80:125 331(1-14).
[3]Chaves A,Covaci L,Rakhimov Kh Yu,et al.Wave-packet dynamics and valley filter in strained graphene[J].Physical Review B,2010,82:205 430(1-11).
[4]Maksimova G M,Demikhovskii V Ya,Frolova E V.Wave packet dynamics in a monolayer graphene[J].Physical Review B,2008,78:235 321(1-7).
[5]Szafran B,Peeters F M.Time-dependent simulations of electron transport through a quantum ring:effect of the Lorentz force[J].Physical Review B,2005,72:165 301(1-8).
[6]Szafran B,Peerers F M.Lorenta-force-induced asymmetry in the Aharonov-Bohm effect in a three-terminal semiconductor quantum ring[J].Europhy Letter,2005,70(6):810-816.
[7]邵和助.Schorodinger方程的数值解法上[D].上海:上海大学理学院物理系,2010:109-110.
[8]曾谨言.量子力学教程[M].2版.北京:科学教育出版社,2008:36-40.
[9]纪坤,陈建平.LU分解分块算法的研究与实现[J].南京师大学报:自然科学版(计算机专辑),2008,31:55-60.
[10]陈建平.LU分解递归算法的研究[J].计算机科学,2004,31(6):141-142.
[11]Watanabe N,Tsukada M.Fast and stable method for simulating quantum electron dynamics[J].Phys Rev E,2000,62:2 914-2 923.

相似文献/References:

[1]唐兴栋.SchrdingerHartree方程爆破解的存在性[J].南京师大学报(自然科学版),2014,37(02):33.
 Tang Xingdong.Blowup Solutions to the SchrdingerHartree Equation[J].Journal of Nanjing Normal University(Natural Science Edition),2014,37(03):33.
[2]骆 敏,程子恒,包建阳.电子在斐波那契量子阱结构中的能量性质[J].南京师大学报(自然科学版),2016,39(03):57.[doi:10.3969/j.issn.1001-4616.2016.03.010]
 Luo Min,Cheng Ziheng,Bao Jianyang.Electronic Energy Properties of the Fibonacci Quantum Wells Structure[J].Journal of Nanjing Normal University(Natural Science Edition),2016,39(03):57.[doi:10.3969/j.issn.1001-4616.2016.03.010]
[3]洪明理,李林锐,黄代文.带有不定线性部分的薛定谔方程的多解存在性[J].南京师大学报(自然科学版),2021,44(03):9.[doi:10.3969/j.issn.1001-4616.2021.03.002]
 Hong Mingli,Li Linrui,Huang Daiwen.Multiple Solutions of a Schr?inger Equation with Indefinite Nonlinearity[J].Journal of Nanjing Normal University(Natural Science Edition),2021,44(03):9.[doi:10.3969/j.issn.1001-4616.2021.03.002]

备注/Memo

备注/Memo:
收稿日期:2013-03-13.
基金项目:国家自然科学基金(10947004)、江苏省自然科学基金(BK2008427)、高校博士学位点专项基金(200803190004).
通讯联系人:刘 红,副教授,研究方向:低维凝聚态物理理论.E-mail:liuhong3@njnu.edu.cn
更新日期/Last Update: 2013-09-30