[1]孙文俊,倪国喜.辐射流体力学的压力解耦BGK分子动理学方法[J].南京师大学报(自然科学版),2013,36(04):5.
 Sun Wenjun,Ni Guoxi.A Pressure Decoupled BGK Model for the Equations of Radiation Hydrodynamics[J].Journal of Nanjing Normal University(Natural Science Edition),2013,36(04):5.
点击复制

辐射流体力学的压力解耦BGK分子动理学方法
分享到:

《南京师大学报(自然科学版)》[ISSN:1001-4616/CN:32-1239/N]

卷:
第36卷
期数:
2013年04期
页码:
5
栏目:
数学
出版日期:
2013-12-31

文章信息/Info

Title:
A Pressure Decoupled BGK Model for the Equations of Radiation Hydrodynamics
作者:
孙文俊倪国喜
北京应用物理与计算数学研究所,北京 100088
Author(s):
Sun WenjunNi Guoxi
Beijing Institute of Applied Physics and Computational Mathematics,Beijing 100088,China
关键词:
BGK模型辐射流体力学无扩散二阶BGK格式
Keywords:
BGK modelradiation hydrodynamicszero diffusion2nd-order BGK scheme
分类号:
O241.8
文献标志码:
A
摘要:
本文通过一个物质压力和辐射压力解耦的分子动理学BGK模型,设计了辐射流体力学方程的分子动理学数值格式.该格式有两方面的优点,一方面,由于BGK模型中流体压力和辐射压力的解耦,因而物质压与辐射压的作用可以解耦,微观方程与宏观方程间的关系变得更为简单; 另一方面,利用该BGK模型,数值格式的构造与原有方法相比也大大简化.对不带扩散项的高维辐射流体力学方程组给出了我们构造的二阶BGK分子动理学格式.一维和高维的数值算例显示了新格式的性能.
Abstract:
This paper concerns a kinetic scheme for the equations of radiation hydrodynamics by constructing a pressure decoupled BGK model,in which hydrodynamic and radiation pressures are decoupled.The merits have two aspects,on one hand,with this decoupled model,the actions of material and radiation can be decoupled easily,a more clear relation between the macroscopic equation and microscopic equation can be obtained,on the other hand,the construction of the scheme based on this model can be simplified greatly.A second order BGK scheme for the equations of multidimensional radiation hydrodynamics(RHE)in zero diffusion limit is also presented.Several one and two dimensional numerical examples demonstrate the performance of the new scheme.

参考文献/References:

[1] Pomraning G C.The Equations of Radiation Hydrodynamics[M].Oxford:Pergamon Press,1973:1-281.
[2]Mihalas D,Mihalas B W.Foundations of Radiation Hydrodynamics[M].New York:Oxford University Press,1984:1-718.
[3]Dai W,Woodward P R.Numerical simulations for radiation hydrodynamics.Part Ⅰ:diffusion limit[J].J Comput Phys,1998,142:182-207.
[4]Reitz R D.One-dimensional compressible gas dynamics calculations using the Boltzmann equations[J].J Comput Phys,1981,42:108-123.
[5]Perthame B.Second-order Boltzmann scheme for compressible Euler equations in one and two space dimensions[J].SIAM J Numer Anal,1992,29:1-29.
[6]Mandal J C,Deshpande S M.Kinetic flux vector splitting for Euler equations[J].Computers and Fluids,1994,23:447-478.
[7]Chou S Y,Baganoff D.Kinetic flux-vector splitting for the Navier-Stokes equations[J].J Comput Phys,1997,130:217-230.
[8]Xu K,Martinelli I,Jameson A.Gas-kinetic finite volume methods,flux-vector splitting and artificial diffusion[J].J Comput Phys,1995,120:48-65.
[9]Prendergast K H,Xu K.Numerical hydrodynamics from gas-kinetic theory[J].J Comput Phys,1993,109:53-66.
[10]Jiang S,Ni G X.A γ-model BGK scheme for compressible multifluids[J].Int J Numer Meth Fluids,2004,46:163-182.
[11]Xu K,Kim C,Martinelli I,et al.BGK-based scheme for the simulation of compressible flow[J].Int J Comput Fluids Dynamics,1996,7:213-235.
[12]Tang H Z,Wu H M.Kinetic flux vector splitting for radiation hydrodynamical equations[J].Computers and Fluids,2000,29:917-933.
[13]Jiang S,Sun W J.A seconde order BGK scheme for the equations of radiation hydrodynamics[J].Int J Numer Meth Fluids,2007,53:391-416.
[14]Cercignani C.The Boltzmann Equation and Its Applications[M].Berlin,New York:Springer-Verlag,1988:1-451.
[15]Chapman S,Cowling T W.The Mathematical Theory of Non-Uniform Gases[M].3rd ed.Cambridge:Combridge Univ Press,1990:1-423.
[16]van Leer B.Towards the ultimate conservative difference schemes V.A second-order sequal to Godunov’s method[J].J Comput Phys,1979,32:101-136.
[17]Xu K.A gas-kinetic BGK scheme for the Navier-Stokes equations and its connection with artificial dissipation and Godunov method[J].J Comput Phys,2001,171:289-335.

备注/Memo

备注/Memo:
Received data:2013-04-13.
Foundation item:Supported by the National Natural Science Foundation of China(11001026,11371068,10971016,40890154,91130020).
Corresponding author:Sun Wenjun,associated professor,majored in computational fluid dynamics.E-mail:sun_wenjun@iapcmm.ac.cn
更新日期/Last Update: 2013-12-30