[1]王 锋,沈 琼.求解二阶椭圆问题的弱超罚对称内惩罚法的多水平预处理方法[J].南京师大学报(自然科学版),2013,36(04):22.
 Wang Feng,Shen Qiong.A Multilevel Preconditioner for the Weakly Over-Penalized Symmetric Interior Penalty Method for Second-Order Elliptic Problems[J].Journal of Nanjing Normal University(Natural Science Edition),2013,36(04):22.
点击复制

求解二阶椭圆问题的弱超罚对称内惩罚法的多水平预处理方法
分享到:

《南京师大学报(自然科学版)》[ISSN:1001-4616/CN:32-1239/N]

卷:
第36卷
期数:
2013年04期
页码:
22
栏目:
数学
出版日期:
2013-12-31

文章信息/Info

Title:
A Multilevel Preconditioner for the Weakly Over-Penalized Symmetric Interior Penalty Method for Second-Order Elliptic Problems
作者:
王 锋沈 琼
江苏省“大规模复杂系统数值模拟”重点实验室,南京师范大学数学科学学院,江苏 南京 210023
Author(s):
Wang FengShen Qiong
Jiangsu Key Laboratory for NSLSCS,School of Mathematical Sciences,Nanjing Normal University,Nanjing 210023,China
关键词:
DG多水平内惩罚弱超罚
Keywords:
DGmultilevel preconditionersinterior penaltyweakly over-penalization
分类号:
O214.82
文献标志码:
A
摘要:
本文设计了求解二阶椭圆问题的弱超罚对称内惩罚方法的一个多水平预处理子,并证明了预处理后系统的条件数与网格尺寸无关.数值算例验证了理论结果.
Abstract:
This paper proposes a multilevel preconditioner for the weakly over-penalized symmetric interior penalty method for second-order elliptic problems.It is proved that the condition number of the preconditioned system is independent of the mesh size.Numerical experiments are presented to confirm our theoretical result.

参考文献/References:

[1] Brenner S,Owens L,Sung L.A weakly over-penalized symmetric interior penalty method[J].Electron Trans Numer Anal,2008,30:107-127.
[2]Brix K,Campos M,Dahmen W.A multilevel preconditioner for the interior penalty discontinuous Galerkin method[J].SIAM J Numer Anal,2008,46(5):2 742-2 768.
[3]Ayuso de Dios B,Zikatanov L.Uniformly covergent iterative methods for discontinuous Galerkin discretization[J].J Sci Comput,2009,40(1/3):4-36.
[4]Brenner S,Park E,Sung L.Two-level additive Schwarz preconditioners for a weakly over-penalized symmetric interior penalty method[J].J Sci Comput,2011,47(1):27-49.
[5]Bramble J,Pasciak E,Xu J.Parallel multilevel preconditioners[J].Math Comp,1990,55(191):1-22.
[6]许学军,王烈衡.有限元方法的数学理论[M].北京:科学出版社,2004.
[7]Brenner S,Scott L.The mathematical theory of finite element methods[M].New York:Springer,2008.
[8]杜其奎,陈金如.有限元方法的数学理论[M].北京:科学出版社,2012.
[9]Vassilevski P,Wang J.An application of the abstract mulitlevel theory to nonconforming finite element methods[J].SIAM J Numer Anal,1995,32(1):235-248.
[10]Wang F,Chen J,Huang P.A multilevel preconditioner for the Crouzeix Raviart finite element method for elliptic problems with disconitnuous coefficients[J].Sci China Math,2012,55(7):1 321-1 526.

备注/Memo

备注/Memo:
收稿日期:2013-04-16.
基金项目:国家自然科学基金(11071124、11171335、11226334、11371199、11301275)、江苏省普通高校自然科学研究项目(12KJB110013)、高等学校博士学科点专项科研基金(20123207120001).
通讯联系人:王锋,博士,讲师,研究方向:偏微分方程数值解.E-mail:fwang@njnu.edu.cn
更新日期/Last Update: 2013-12-30