[1]刘达克,杨双波.周期受击陀螺的保真度隧道效应及能量量子期待值[J].南京师大学报(自然科学版),2014,37(02):60.
 Liu Dake,Yang Shuangbo.Fidelity,Tunneling,and Quantum Expectation Value of Energy for a Periodically Kicked Free Top[J].Journal of Nanjing Normal University(Natural Science Edition),2014,37(02):60.
点击复制

周期受击陀螺的保真度隧道效应及能量量子期待值
分享到:

《南京师大学报(自然科学版)》[ISSN:1001-4616/CN:32-1239/N]

卷:
第37卷
期数:
2014年02期
页码:
60
栏目:
物理学
出版日期:
2014-06-30

文章信息/Info

Title:
Fidelity,Tunneling,and Quantum Expectation Value of Energy for a Periodically Kicked Free Top
作者:
刘达克杨双波
江苏省大规模复杂系统数值模拟重点实验室,南京师范大学物理科学与技术学院,江苏南京210023
Author(s):
Liu DakeYang Shuangbo
Jiangsu Key Laboratory for NSLSCS,School of Physics and Technology,Nanjing Normal University,Nanjing 210023,China
关键词:
陀螺保真度隧道效应能量量子期待值
Keywords:
topfidelitytunneling effectquantum expectation value for energy
分类号:
0413. 1
文献标志码:
A
摘要:
研究一个周期受击陀螺的保真度、隧道效应和能量量子期待值. 研究发现,随着打击强度姿的增加,经典相空间结构从规则的轨道到出现岛再到完全混沌. 当参数取为α=π/2,λ=3. 0 时,以相空间的稳定固定点处的周期轨道对应的相干态作为初始态的保真度最高,而且随时间呈周期性变化;以规则区域对应的相干态作为初始态的保真度呈不规则的变化;以混沌区域对应的相干态作为初始态的保真度有很大幅度的下降. 当参数取为α=1. 0,λ=2. 0 时,相空间中两个岛中心对应的相干态可以相互遂穿,隧穿周期随混沌的渗透大幅度缩短.
Abstract:
This paper studies fidelity,tunneling,and the quantum expectation value of energy for a periodically kicked free top. The study found that,with the strengthλ increased the classical phase space portraits transform from the regular track to island and finally complete chaotic. When α=π/2,λ=3. 0,fidelity that the initial coherent state corresponds to the fixed point is the highest and presents regular periodic change. Fidelity that the initial coherent state corresponds to regular track presents irregular change. Fidelity that the initial coherent state corresponds to chaos reduces drastically. When α=1. 0,λ=2. 0,two coherent states that correspond to the centre of two islands can mutually tunnel each other, the period of tunneling will be greatly reduced when chaos set in. Quantum expectation values of energy for regular and chaotic region are quasi-periodic,but the manifestations are different.

参考文献/References:

[1]Tabor M. Chaos and Integrability in Nonlinear Dynamics:An Introduction[M]. New York:Wiley Interscience,1989.
[2] Ozorio de Almeida A M. Hamiltonian Systems:Chaos and Quantization[M]. Cambridge:Cambridge University Press,1988.
[3] Gutzwiller M C. Chaos in Classical and Quantum Mechanics[M]. New York:Springer,1990.
[4] Stockmann H J. Quantum Chaos:An Introduction[M]. Cambridge:Cambridge University Press,1999.
[5] Ott E. Chaos in Dynamical Systems[M]. Cambridge:Cambridge University Press,2002.
[6] 汪昭,杨双波. 势阱中的混沌及量子对应[J]. 南京师大学报:自然科学版,2009,32(3):31-36.
[7] 杨双波,韦栋. 周期受击简谐振子系统的经典与量子动力学[J]. 南京师大学报:自然科学版,2011,34(3):49-54.
[8] 杨双波,韦栋. 周期受击简谐振子系统的经典动力学与准能谱统计[ J]. 南京师大学报:自然科学版,2012,35(3):37-42.
[9] 杨双波,刘达克. 周期受击陀螺的经典动力学与准能谱统计[J]. 南京师大学报:自然科学版,2013,36(1):48-53.
[10] Seligman T H,Verbaarschot J M,Zirnbauer M R. Quantum spectra and transition from regular to chaotic classical motion[J].Phys Rev Lett,1984,53:215-217
[11] Davis M J,Heller E J. Multidimensional wave functions from classical trajectories[J]. J Chem Phys,1981,75:3 916-3 924.
[12] Stratt R M,Handy N C,Miller W H. On the quantum mechanical implications of classical ergodicity[J]. J Chem Phys,1979,71:3 311-3 322.
[13] McDonald S W. Wave Dynamics of Regualr and Chaotic Rays[ D]. Berkeley: Physics Department, Univ of California at Berkeley,1983
[14] Heller E J. Bound-state eigenfunctions of classically chaotic Hamiltonian systems-scars of periodic orbits[J]. Phys Rev Lett, 1984,53:1 515-1 519.
[15] Peres A. Quantum Theory:Concepts and Methods[M]. New York:Kluwer Academic,1995.
[16] Dubertrand Remy,Guarneri Italo,Wimberger Sandro. Fidelity for kicked atoms with gravity near quantum resonance[J]. Phys Rev E,2012,85:036205-1-8
[17] Davis M J,Heller E J. Quantum dynamical tunneling in bound states[J]. J Chem Phys,1981,75:246-254.
[18] Lin W A,Ballentine L E. Quantum tunnelling and regular and irregular quantum dynamics of a driven double well oscillators[J]. Phys Rev A,1992,45:3 637-3 645.
[19] Bavli R,Metiu H. Properties of an electron in a quantum double well driven by a strong laser:localization,low frequency,and even harmonic generation[J]. Phys Rev A,1993,47:3 299-3 310.
[20] Averbukh V,Osovski S,Moiseyev N. Controlled tunneling of cold atoms-from full suppression to strong enhancement[J]. Phys Rev Lett,2002,89:253201-1-4
[21] Osovski S,Moiseyev N. Fingerprints of classical chaos in manipulation of cold atoms in the dynamical tunneling experiments [J]. Phys Rev A,2005,72:033603-1-13.

相似文献/References:

[1]杨双波,刘达克.周期受击陀螺的经典动力学及准能谱统计[J].南京师大学报(自然科学版),2013,36(01):48.
 Yang Shuangbo,Liu Dake.Classical Dynamics and Quasienergy Spectral Statistics for a Periodically Kicked Free Top[J].Journal of Nanjing Normal University(Natural Science Edition),2013,36(02):48.
[2]李延标,秦 猛,王 晓,等.不同方向缺陷磁场对量子自旋体系纠缠和信息传输的影响[J].南京师大学报(自然科学版),2015,38(02):38.
 Li Yanbiao,Qin Meng,Wang Xiao,et al.Effects of Different Defect Magnetic Fields on Entanglement and Information Transmission in Quantum Spin Systems[J].Journal of Nanjing Normal University(Natural Science Edition),2015,38(02):38.

备注/Memo

备注/Memo:
收稿日期:2013-03-14.
通讯联系人:杨双波,博士,教授,研究方向:量子混沌. E-mail:yangshuangbo@ njnu.edu.cn
更新日期/Last Update: 2014-06-30