参考文献/References:
[1] 李弼程,彭天强,彭波.智能图像处理技术[M].北京:电子工业出版社,2004.
[2]Marques de Sa J P,吴逸飞.模式识别—原理、方法及应用[M].北京:清华大学出版社,2002.
[3]Vapnik V N.统计学习理论[M].许建华,张学工,译.北京:电子工业出版社,2004.
[4]Cristianini N,Shawe-Taylor J.支持向量机导论[M].李国正,王猛,曾华军,等译.北京:电子工业出版社,2004.
[5]丁世飞,齐丙娟,谭红艳.支持向量机理论与算法研究综述[J].电子科技大学学报,2011,40(1):2-10.
[6]张学工.关于统计学习理论与支持向量机[J].自动化学报,2000,26(1):32-42.
[7]顾亚祥,丁世飞.支持向量机研究进展[J].计算机科学,2011,38(2):14-17.
[8]刘晓亮,丁世飞.SVM用于文本分类的适用性[J].计算机工程与科学,2010,32(6):106-108.
[9]林开标,王周敬.基于支持向量机的传真收件人识别方法[J].计算机工程与应用,2006(7):156-158.
[10]谢塞琴,沈福明,邱雪娜.基于支持向量机的人脸识别方法[J].计算机工程,2009,35(16):186-188.
[11]李颖新,阮晓钢.基于支持向量机的肿瘤分类特征基因选择[J].软件工程,2005,42(10):1 796-1 801.
[12]高伟,王宁.浅海混响时间序列的支持向量机预测[J].计算机工程,2008,34(6):25-27.
[13]Jayadeva R K,Khemchandani R,Chandra S.Twin support vector machines for pattern classification[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2007,29(5):905-910.
[14]张志安,冯宏伟.一种新的基于纹理和空间分布特征的图像检索[J].光电子学报,2008,37(2):400-403.
[15]Pun C M,Lee M C.Rotation invariant texture feature for content based image retrieval[J].Computer Vision and Image Understanding,2003,89(1):24-43.
[16]Han Jun,Ma Kaikuang.Fuzzy color histogram and its use in color image retrieval[J].IEEE Transactions on Image Processing,2002,11(8):944-952.
[17]Deng Yining,Manjunath B S,Kenney Charles,et al.An efficient color representation for image retrieval[J].IEEE Transactions of Image Processing,2001,1(10):140-147.
[18]Gomez-Moreno H,Maldonado Bascon S,Lopez Ferreras F.Edge detection in noisy images by using the support vector machines[C]//International Work-Conference on Artificial Neural Networks.Heidelberg:Springer-Verlag,2001:686-692.
[19]常哲,候榆青,程涛,等.综合颜色和纹理特征的图像检索[C]//全国第三届信号智能信息处理与应用学术交流会.昆明:计算机工程与应用,2009,1(11):237-240.
[20]Qi Bingjuan,Ding Shifei,Huang Huajuan,et al.Support vector extraction method based on clustering membership[J].International Journal of Digital Content Technology and its Applications,2012,6(13):1-10.
[21]齐丙娟,丁世飞.基于FCM隶属度的支持向量机[J].微电子学与计算机,2011,28(10):48-51.
[22]Ding Shifei,Yu Junzhao,Huang Huajuan,et al.Twin support vector machines based on particle swarm optimization[J].Journal of Computers,2013,8(9):2 296-2 303.
[23]Huang Huajuan,Ding Shifei,Wu Fulin.Invasive weed optimization algorithm for optimizating the parameters of mixed kernel twin support vecotr machines[J].Journal of Computers,2013,8(8):2 077-2 084.
[24]Ding Shifei,Wu Fulin,Nie Ru,et al.Twin support vector machines based on quantum particle swarm optimization[J].Journal of Software,2013,8(7):1 743-1 750.
[25]Ding Shifei,Huang Huajuan,Nie Ru.Forecasting method of stock price based on polynomial smooth twin support vector regression[J].Lecture Notes in Computer Science,2013,7 995:96-105.
相似文献/References:
[1]舒 速,杨 明,赵振凯.基于分水岭的高光谱图像分类方法[J].南京师大学报(自然科学版),2015,38(01):91.
Shu Su,Yang Ming,Zhao Zhenkai.Hyperspectral Image Classification Method Based on Watershed[J].Journal of Nanjing Normal University(Natural Science Edition),2015,38(03):91.
[2]王 征,李皓月,许洪山,等.基于卷积神经网络和SVM的中国画情感分类[J].南京师大学报(自然科学版),2017,40(03):74.[doi:10.3969/j.issn.1001-4616.2017.03.011]
Wang Zheng,Li Haoyue,Xu Hongshan,et al.Chinese Painting Emotion Classification Based onConvolution Neural Network and SVM[J].Journal of Nanjing Normal University(Natural Science Edition),2017,40(03):74.[doi:10.3969/j.issn.1001-4616.2017.03.011]
[3]汤嘉立,朱广萍,杜卓明.支持向量机多特征分类学习的超分辨率复原[J].南京师大学报(自然科学版),2018,41(03):28.[doi:10.3969/j.issn.1001-4616.2018.03.005]
Tang Jiali,Zhu Guangping,Du Zhuoming.Super-resolution Restoration Algorithm Based onSVM Multi-figure Classification Learning[J].Journal of Nanjing Normal University(Natural Science Edition),2018,41(03):28.[doi:10.3969/j.issn.1001-4616.2018.03.005]
[4]寇振宇,杨绪兵,张福全,等.L1范数最大间隔分类器设计[J].南京师大学报(自然科学版),2018,41(04):59.[doi:10.3969/j.issn.1001-4616.2018.04.010]
Kou Zhenyu,Yang Xubing,Zhang Fuquan,et al.Design of L1 Norm Maximum Margin Classifier[J].Journal of Nanjing Normal University(Natural Science Edition),2018,41(03):59.[doi:10.3969/j.issn.1001-4616.2018.04.010]
[5]王 芃,吕 静,沈华乐.基于局部结构保持的自适应有序回归学习[J].南京师大学报(自然科学版),2019,42(02):9.[doi:10.3969/j.issn.1001-4616.2019.02.002]
Wang Peng,Lü Jing,Shen Huale.Improved Adaptive Ordinal Regression LearningBased on Locality Structure Preserving[J].Journal of Nanjing Normal University(Natural Science Edition),2019,42(03):9.[doi:10.3969/j.issn.1001-4616.2019.02.002]
[6]汤 凯,何 庆,赵 群,等.基于改进的深度残差网络的图像识别[J].南京师大学报(自然科学版),2019,42(03):115.[doi:10.3969/j.issn.1001-4616.2019.03.015]
Tang Kai,He Qing,Zhao Qun,et al.Image Recognition Based on Improved Deep Neural Network[J].Journal of Nanjing Normal University(Natural Science Edition),2019,42(03):115.[doi:10.3969/j.issn.1001-4616.2019.03.015]