[1]朱志宾,丁世飞.基于TWSVM的图像分类[J].南京师大学报(自然科学版),2014,37(03):8.
 Zhu Zhibin,Ding Shifei.Image Classification Based on Twin Support Vector Machines[J].Journal of Nanjing Normal University(Natural Science Edition),2014,37(03):8.
点击复制

基于TWSVM的图像分类()
分享到:

《南京师大学报(自然科学版)》[ISSN:1001-4616/CN:32-1239/N]

卷:
第37卷
期数:
2014年03期
页码:
8
栏目:
计算机科学
出版日期:
2014-09-30

文章信息/Info

Title:
Image Classification Based on Twin Support Vector Machines
作者:
朱志宾1丁世飞12
(1.中国矿业大学计算机科学与技术学院,江苏 徐州 221116)(2.中国科学院计算技术研究所智能信息处理重点实验室,北京 100190)
Author(s):
Zhu Zhibin1Ding Shifei12
(1.School of Computer Science and Technology,China University of Mining and Technology,Xuzhou 221116,China)(2.Key Laboratory of Intelligent Information Processing,Institute of Computing Technology,Chinese Academy of Sciences,Beijing 100190,China)
关键词:
图像分类支持向量机孪生支持向量机特征提取
Keywords:
image classificationSupport Vector MachineTwin Support Vector Machinesfeature extraction
分类号:
TP181
文献标志码:
A
摘要:
图像分类技术是图像数据处理中最重要的技术之一.支持向量机是基于统计学习理论而提出的机器学习算法,在样本数少的时候能达到很好的分类效果.孪生支持向量机是基于支持向量机而提出来的,其性能优于支持向量机.通过提取彩色图像的颜色特征与纹理特征,利用孪生支持向量机与支持向量机对这些特征向量进行分类,孪生支持向量机的分类准确率与稳定性都高于支持向量机.
Abstract:
The image classification is one of the most important technologies of image data processing.Support Vector Machine is a machine learning algorithm based on statistical learning theory,which can achieve a good classification results in the small sample size.Twin Support Vector Machines is based on Support Vector Machine,which is superior to Support Vector Machine.By extracting color features and texture features of images,using Twin Support Vector Machines and Support Vector Machine to classify these feature vectors,the results shows that the accuracy and stability of Twin Support Vector Machines is higher than Support Vector Machine.

参考文献/References:

[1] 李弼程,彭天强,彭波.智能图像处理技术[M].北京:电子工业出版社,2004.
[2]Marques de Sa J P,吴逸飞.模式识别—原理、方法及应用[M].北京:清华大学出版社,2002.
[3]Vapnik V N.统计学习理论[M].许建华,张学工,译.北京:电子工业出版社,2004.
[4]Cristianini N,Shawe-Taylor J.支持向量机导论[M].李国正,王猛,曾华军,等译.北京:电子工业出版社,2004.
[5]丁世飞,齐丙娟,谭红艳.支持向量机理论与算法研究综述[J].电子科技大学学报,2011,40(1):2-10.
[6]张学工.关于统计学习理论与支持向量机[J].自动化学报,2000,26(1):32-42.
[7]顾亚祥,丁世飞.支持向量机研究进展[J].计算机科学,2011,38(2):14-17.
[8]刘晓亮,丁世飞.SVM用于文本分类的适用性[J].计算机工程与科学,2010,32(6):106-108.
[9]林开标,王周敬.基于支持向量机的传真收件人识别方法[J].计算机工程与应用,2006(7):156-158.
[10]谢塞琴,沈福明,邱雪娜.基于支持向量机的人脸识别方法[J].计算机工程,2009,35(16):186-188.
[11]李颖新,阮晓钢.基于支持向量机的肿瘤分类特征基因选择[J].软件工程,2005,42(10):1 796-1 801.
[12]高伟,王宁.浅海混响时间序列的支持向量机预测[J].计算机工程,2008,34(6):25-27.
[13]Jayadeva R K,Khemchandani R,Chandra S.Twin support vector machines for pattern classification[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2007,29(5):905-910.
[14]张志安,冯宏伟.一种新的基于纹理和空间分布特征的图像检索[J].光电子学报,2008,37(2):400-403.
[15]Pun C M,Lee M C.Rotation invariant texture feature for content based image retrieval[J].Computer Vision and Image Understanding,2003,89(1):24-43.
[16]Han Jun,Ma Kaikuang.Fuzzy color histogram and its use in color image retrieval[J].IEEE Transactions on Image Processing,2002,11(8):944-952.
[17]Deng Yining,Manjunath B S,Kenney Charles,et al.An efficient color representation for image retrieval[J].IEEE Transactions of Image Processing,2001,1(10):140-147.
[18]Gomez-Moreno H,Maldonado Bascon S,Lopez Ferreras F.Edge detection in noisy images by using the support vector machines[C]//International Work-Conference on Artificial Neural Networks.Heidelberg:Springer-Verlag,2001:686-692.
[19]常哲,候榆青,程涛,等.综合颜色和纹理特征的图像检索[C]//全国第三届信号智能信息处理与应用学术交流会.昆明:计算机工程与应用,2009,1(11):237-240.
[20]Qi Bingjuan,Ding Shifei,Huang Huajuan,et al.Support vector extraction method based on clustering membership[J].International Journal of Digital Content Technology and its Applications,2012,6(13):1-10.
[21]齐丙娟,丁世飞.基于FCM隶属度的支持向量机[J].微电子学与计算机,2011,28(10):48-51.
[22]Ding Shifei,Yu Junzhao,Huang Huajuan,et al.Twin support vector machines based on particle swarm optimization[J].Journal of Computers,2013,8(9):2 296-2 303.
[23]Huang Huajuan,Ding Shifei,Wu Fulin.Invasive weed optimization algorithm for optimizating the parameters of mixed kernel twin support vecotr machines[J].Journal of Computers,2013,8(8):2 077-2 084.
[24]Ding Shifei,Wu Fulin,Nie Ru,et al.Twin support vector machines based on quantum particle swarm optimization[J].Journal of Software,2013,8(7):1 743-1 750.
[25]Ding Shifei,Huang Huajuan,Nie Ru.Forecasting method of stock price based on polynomial smooth twin support vector regression[J].Lecture Notes in Computer Science,2013,7 995:96-105.

相似文献/References:

[1]舒 速,杨 明,赵振凯.基于分水岭的高光谱图像分类方法[J].南京师大学报(自然科学版),2015,38(01):91.
 Shu Su,Yang Ming,Zhao Zhenkai.Hyperspectral Image Classification Method Based on Watershed[J].Journal of Nanjing Normal University(Natural Science Edition),2015,38(03):91.
[2]王 征,李皓月,许洪山,等.基于卷积神经网络和SVM的中国画情感分类[J].南京师大学报(自然科学版),2017,40(03):74.[doi:10.3969/j.issn.1001-4616.2017.03.011]
 Wang Zheng,Li Haoyue,Xu Hongshan,et al.Chinese Painting Emotion Classification Based onConvolution Neural Network and SVM[J].Journal of Nanjing Normal University(Natural Science Edition),2017,40(03):74.[doi:10.3969/j.issn.1001-4616.2017.03.011]
[3]汤嘉立,朱广萍,杜卓明.支持向量机多特征分类学习的超分辨率复原[J].南京师大学报(自然科学版),2018,41(03):28.[doi:10.3969/j.issn.1001-4616.2018.03.005]
 Tang Jiali,Zhu Guangping,Du Zhuoming.Super-resolution Restoration Algorithm Based onSVM Multi-figure Classification Learning[J].Journal of Nanjing Normal University(Natural Science Edition),2018,41(03):28.[doi:10.3969/j.issn.1001-4616.2018.03.005]
[4]寇振宇,杨绪兵,张福全,等.L1范数最大间隔分类器设计[J].南京师大学报(自然科学版),2018,41(04):59.[doi:10.3969/j.issn.1001-4616.2018.04.010]
 Kou Zhenyu,Yang Xubing,Zhang Fuquan,et al.Design of L1 Norm Maximum Margin Classifier[J].Journal of Nanjing Normal University(Natural Science Edition),2018,41(03):59.[doi:10.3969/j.issn.1001-4616.2018.04.010]
[5]王 芃,吕 静,沈华乐.基于局部结构保持的自适应有序回归学习[J].南京师大学报(自然科学版),2019,42(02):9.[doi:10.3969/j.issn.1001-4616.2019.02.002]
 Wang Peng,Lü Jing,Shen Huale.Improved Adaptive Ordinal Regression LearningBased on Locality Structure Preserving[J].Journal of Nanjing Normal University(Natural Science Edition),2019,42(03):9.[doi:10.3969/j.issn.1001-4616.2019.02.002]
[6]汤 凯,何 庆,赵 群,等.基于改进的深度残差网络的图像识别[J].南京师大学报(自然科学版),2019,42(03):115.[doi:10.3969/j.issn.1001-4616.2019.03.015]
 Tang Kai,He Qing,Zhao Qun,et al.Image Recognition Based on Improved Deep Neural Network[J].Journal of Nanjing Normal University(Natural Science Edition),2019,42(03):115.[doi:10.3969/j.issn.1001-4616.2019.03.015]

备注/Memo

备注/Memo:
收稿日期:2014-02-16.
基金项目:国家重点基础研究发展规划(973计划)(2013CB329502)、国家自然科学基金(61379101).
通讯联系人:丁世飞,博士,教授,博士生导师,研究方向:人工智能、模式识别、数据挖掘等.E-mail:dingsf@cumt.edu.cn
更新日期/Last Update: 2014-09-30