[1]张 帆,王风贺,郝昊天,等.SGA对重金属污染矿区土壤中重金属的稳定化性能研究[J].南京师大学报(自然科学版),2014,37(03):62.
 Zhang Fan,Wang Fenghe,Hao Haotian,et al.Solidification Performance for Heavy Metals in Polluted Soilsof Mined Area Using Sixthio Guanidine Acid(SGA)[J].Journal of Nanjing Normal University(Natural Science Edition),2014,37(03):62.
点击复制

SGA对重金属污染矿区土壤中重金属的稳定化性能研究()
分享到:

《南京师大学报(自然科学版)》[ISSN:1001-4616/CN:32-1239/N]

卷:
第37卷
期数:
2014年03期
页码:
62
栏目:
化学
出版日期:
2014-09-30

文章信息/Info

Title:
Solidification Performance for Heavy Metals in Polluted Soilsof Mined Area Using Sixthio Guanidine Acid(SGA)
作者:
张 帆12王风贺1郝昊天1邹丽娜1纪营雪12段伦超1顾中铸2
(1.江苏省物质循环与污染控制重点实验室,南京师范大学环境科学与工程系,江苏 南京 210023)(2.南京师范大学能源与机械工程学院,江苏 南京 210042)
Author(s):
Zhang Fan12Wang Fenghe 1Hao Haotian1Zou Lina1Ji Yingxue12Duan Lunchao1Gu Zhongzhu2
(1.Jiangsu Provincial Key Laboratory of Materials Cycling and Pollution Control,Department of Environmental Science and Engineering,Nanjing Normal University,Nanjing 210023,China)(2.School of Energy and Mechanics Engineering,Nanjing Normal University,Na
关键词:
重金属捕集剂土壤重金属稳定化
Keywords:
heavy metal chelating agent soilsheavy metalstabilization
分类号:
X53
文献标志码:
A
摘要:
对铅锌矿区周边土壤中Pb、Cd、As等重金属分别进行了总量及其形态研究.重点考察重金属固化剂六硫代胍基甲酸(SGA)和二甲基二硫代氨基甲酸盐(SDD)对不同形态重金属的稳定化性能.研究结果表明,采集的土壤样品受Pb、Cd、As等重金属污染较为严重,样品S1中As、Pb含量分别超过土壤环境质量三级标准10.17倍、3.29倍,Cd超过土壤环境质量二级标准28.7倍.SGA对弱酸态As、Cd和Pb的综合稳定化性能优良,对3种重金属的稳定化率最高达到92.73%、82.35%和81.48%; SDD对可氧化态Cd稳定化性能优于SGA,最高稳定化率为88.89%.SGA作为一种新型重金属螯合捕集剂,可以应用于重污染土壤中重金属的污染控制和修复.
Abstract:
The characteristics and distribution of different forms of heavy metals in soils contaminated from mined area were investigated,and were evaluated according to the BCR sequential extraction protocol. Stabilization performance of sixthio guanidine acid(SGA)and sodium dimethyl dithio darbamate(SDD)were compared.The results indicated that the soils were contaminated seriously by lead,cadmium and arsenium,the contents of As and Pb exceeded 10.17 times and 3.29 times than that of Environmental Quality Standard for Soils(GB 15618-1995)with the Grade Ⅲ standard respectively,and the content of Cd exceeded 28.7 times.SGA had an excellent comprehensive property in stabilization of the heavy metals of acid soluble in soils,the stabilization ratios for As,Pb and Cd were 92.73%,82.35% and 81.48% respectively,while SDD had a better property in immobilization of the heavy metals of oxidizable compared with SGA.As a novel heavy metal chelating agent,SGA can be used in remediation of soils contaminated by heavy metals.

参考文献/References:

[1] 栾以玲,姜志林,吴永刚.栖霞山矿区植物对重金属元素富集能力的探讨[J].南京林业大学学报:自然科学版,2008,32(6):69-72.
[2]储彬彬,罗立强.南京栖霞山铅锌矿地区土壤重金属污染评价[J].岩矿测试,2010,29(1):5-8.
[3]Jung M C,Thornton I.Heavy metal contamination of soils and plants in the vicinity of a lead-zinc mine,Korea[J].Applied Geochemistry,1996,11(1):53-59.
[4]Verner J F,Ramsey M H,Helios-Rybicka E,et al.Heavy metal contamination of soils around a Pb,Zn smelter in Bukowno,Poland[J].Applied Geochemistry,1996,11(1):11-16.
[5]王晓芳,罗立强.铅锌银矿区蔬菜中重金属吸收特征及分布规律[J].生态环境学报,2009,18(1):143-148.
[6]孙鹏轩.土壤重金属污染修复技术及其研究进展[J].环境保护与循环经济,2012(11):48-51.
[7]李广云,曹永富,赵书民,等.土壤重金属危害及修复措施[J].山东林业科技,2011,41(6):96-101.
[8]Kot A,Namiesńik J.The role of speciation in analytical chemistry[J].TrAC Trends in Analytical Chemistry,2000,19(2):69-79.
[9]Arunachalam J,Emons H,Krasnodebska B,et al.Sequential extraction studies on homogenized forest soil samples[J].Science of the Total Environment,1996,181(2):147-159.
[10]褚挂棠.南京栖霞山环境地质问题的研究[J].江苏地质,1986,10(4):38-42.
[11]王立群,罗磊,马义兵,等.重金属污染土壤原位钝化修复研究进展[J].应用生态学报,2009,20(5):1 214-1 222.
[12]Gemeinhardt C,Müller S,Weigand H,et al.Chemical immobilisation of arsenic in contaminated soils using iron(Ⅱ)sulphate-advantages and pitfalls[J].Water,Air and Soil Pollution:Focus,2006,6(3/4):281-297.
[13]Diels L,Van der Lelie N,Bastiaens L.New developments in treatment of heavy metal contaminated soils[J].Reviews in Environmental Science and Biotechnology,2002,1(1):75-82.
[14]Madrid F,Romero A S,Madrid L,et al.Reduction of availability of trace metals in urban soils using inorganic amendments[J].Environmental Geochemistry and Health,2006,28(4):365-373.
[15]Mulligan C N,Yong R N,Gibbs B F.Remediation technologies for metal-contaminated soils and groundwater:an evaluation[J].Engineering Geology,2001,60(1):193-207.
[16]曹心德,魏晓欣,代革联,等.土壤重金属复合污染及其化学钝化修复技术研究进展[J].环境工程学报,2011,5(7):1 441-1 453.
[17]Kumpiene J,Lagerkvist A,Maurice C.Stabilization of As,Cr,Cu,Pb and Zn in soil using amendments—a review[J].Waste Management,2008,28(1):215-225.
[18]Garau G,Silvetti M,Deiana S,et al.Long-term influence of red mud on As mobility and soil physico-chemical and microbial parameters in a polluted sub-acidic soil[J].Journal of Hazardous Materials,2011,185(2):1 241-1 248.
[19]Lelie D V D,Schwitzguebel J P,Glass D J,et al.Peer reviewed:assessing phytoremediation’s progress in the United States and Europe[J].Environmental Science and Technology,2001,35(21):446A-452A.
[20]Wang F H,Ji Y X,Wang J J.Synthesis of heavy metal chelating agent with four chelating groups of N1,N2,N4,N5-tetrakis(2-mercaptoethyl)benzene-1,2,4,5-tetracarboxamide(TMBTCA)and its application for Cu-containing wastewater[J].Journal of Hazardous Materials,2012,241-242:427-432.
[21]王君杰,王风贺,雷武,等.新型重金属捕集剂NBMIPA处理含铜汞废水[J].环境工程学报,2012,6(11):3 933-3 936.
[22]王风贺,王国祥,王志良,等.重金属捕集剂XMT处理电镀废水中Cu2+的试验研究[J].水处理技术,2011,37(10):100-102.
[23]Boevski I I,Milanova M K,Velitchkova N S,et al.Inductively coupled plasma atomic emission spectrometry-accuracy of analytical results and detection limits in the determination of trace elements in soils and sediments[J].Eurasian Journal of Analytical Chemistry,2008,3(1):19-33.
[24]Rodríguez L,Ruiz E,Alonso-Azcárate J,et al.Heavy metal distribution and chemical speciation in tailings and soils around a Pb-Zn mine in Spain[J].Journal of Environmental Management,2009,90(2):1 106.
[25]Gao X,Arthur Chen C T,Wang G,et al.Environmental status of daya bay surface sediments inferred from a sequential extraction technique[J].Estuarine,Coastal and Shelf Science,2010,86(3):369-378.
[26]Davidson C M,Duncan A L,Littlejohn D,et al.A critical evaluation of the three-stage BCR sequential extraction procedure to assess the potential mobility and toxicity of heavy metals in industrially-contaminated land[J].Analytica Chimica Acta,1998,363(1):45-55.
[27]李建新.垃圾焚烧过程重金属污染物迁移机理及稳定化处理技术研究[D].杭州:浙江大学机械与能源工程学院,2004.
[28]国家环境保护局.GB 15618—1995 土壤环境质量标准[S].北京:中国标准出版社,1995.

相似文献/References:

[1]钱新锋,沈国清.苏南河网地区河岸带土壤重金属污染生态风险评价[J].南京师大学报(自然科学版),2012,35(04):78.
 Qian Xinfeng,Sheng Guoqing.Heavy Metal Concentrations and Pollution Assessment of Riparian Soils Along River Network of South Jiangsu Region[J].Journal of Nanjing Normal University(Natural Science Edition),2012,35(03):78.
[2]徐良将,张明礼,杨浩,等.土壤重金属镉污染的生物修复技术研究进展[J].南京师大学报(自然科学版),2011,34(01):102.
 Xu Liangjiang,Zhang Mingli,Yang Hao.Research Progress of Bioremediation Technology of Cadmium Polluted Soil[J].Journal of Nanjing Normal University(Natural Science Edition),2011,34(03):102.
[3]赵凌宇,杨浩,王延华,等.云南斗南蔬菜地重金属分布及潜在生态风险评价[J].南京师大学报(自然科学版),2015,38(03):91.
 ZhaoLingyu,YangHao,WangYanhua,et al.HeavyMetalDistributionandPotentialEcologicalRisksinFlowersGrowingAreasofDounan,Yunnan[J].Journal of Nanjing Normal University(Natural Science Edition),2015,38(03):91.

备注/Memo

备注/Memo:
收稿日期:2013-09-11.
基金项目:国家自然科学
基金项目(41101287)、江苏省科技支撑计划项目(BE2012758)、江苏高校优势学科建设工程资助项目.
通讯联系人:王风贺,副教授,研究方向:水土重金属污染控制与修复.E-mail:wangfenghe@njnu.edu.cn
更新日期/Last Update: 2014-09-30