参考文献/References:
[1] Harker P.Generalized Nash games and quasi-variationalinequalities[J].Eur J Oper Res,1991,54(1):81-94.
[2]Zhang J Z,Qu B,Xiu N H.Some projection-like methods for the generalized Nash equilibria[J].Comput Optim Appl,2010,45(1):89-109.
[3]Contreras J,Krawczyk J,Klusch M.Numerical solutions to Nash-Cournotequilibria in coupledconstraint electricity markets[J].IEEE Trans Power Syst,2004,19(1):195-206.
[4]刘肇军,刘宗谦,冯素芬.有限策略型博弈中的相关策略与具有合约的博弈及其均衡[J].南京师大学报:自然科学版,2008,31(3):33-38.
[5]Facchinei F,Pang J S.Finite-Dimensional Variational Inequality and Complementarity Problems[M].New York:Springer.2003.
[6]Fukushima M,Pang J S.Quasi-variational inequalities,generalized Nash equilibria,and multieader-follower games[J].Comput Manag Sci,2005,2(1):21-56.
[7]Kubota K,Fukushim M.Gap function approach to the generalized Nash equilibrium problem[J].J Opt Theory Appl,2010,144(3):511-531.
[8]Heusinger A Von,Kanzow C.Optimization reformulations of the generalized Nash equilibriumproblem using Nikaido-Isoda-type functions[J].Comput Optim Appl,2009,43(3):353-377.
[9]Fukushima M.Restricted generalized Nash equilibria and controlled penalty algorithm[J].Comput Manag Sci,2011,8(3):201-218.
[10]Nabetani K,Tseng P,Fukushima M.Parametrized variational inequality approaches to generalized Nash equilibrium problems with shared constraints[J].Comput Optim Appl,2011,48(3):423-452.
[11]Dreves A,Kanzow C.Nonsmooth optimization reformulations characterizing all solutions of jointly convexgeneralized Nash equilibrium problems[J].Comput Optim Appl,2011,50(1):23-48.
[12]Heusinger A Von,Kanzow C,Fukushima M.Newton’s method for computing a normalized equilibrium in the generalized Nash game through fixed point formulation[J].Math Program,2012,132(1/2):99-123.
[13]Goldstein A.Convex programming in Hilbert space[J].Bull Amer Math Soc,1964,70:709-710.
[14]Khobotov E.Modification of the extragradient method for solving variational inequalities and certain optimization problems[J].USSR Comput Math Math Phys,1987,27(5):120-127.
[15]Barzilai J,Borwein J M.Two point step size gradient method[J].IMAJ Numer Anal,1988,8(1):141-148.
[16]Dai Y H,Liao L Z.R-linear convergence of the Barzilai and Borwein gradient method[J].IMAJ Numer Anal,2002,22(1):1-10.
[17]Marcos R.On the Barzilai and Borwein choice of steplength for the gradient method[J].IMAJ Numer Anal,1993,13(3):321-326.
[18]Han D R,Zhang H C,Gang Q,et al.An improved two-step method for solving generalized Nash equilibrium problems[J].Eur J Oper Res,2012,216:613-623.