[1]汤胜道,殷世茂.正态分布下参数的模糊贝叶斯估计[J].南京师大学报(自然科学版),2015,38(01):13.
 Tang Shengdao,Yin Shimao.Fuzzy Bayesian Estimation for ParametersBased on Normal Distribution[J].Journal of Nanjing Normal University(Natural Science Edition),2015,38(01):13.
点击复制

正态分布下参数的模糊贝叶斯估计()
分享到:

《南京师大学报》(自然科学版)[ISSN:1001-4616/CN:32-1239/N]

卷:
第38卷
期数:
2015年01期
页码:
13
栏目:
数学
出版日期:
2015-06-30

文章信息/Info

Title:
Fuzzy Bayesian Estimation for ParametersBased on Normal Distribution
作者:
汤胜道殷世茂
安徽工业大学数理学院,安徽 马鞍山 243002
Author(s):
Tang ShengdaoYin Shimao
School of Mathematics and Physics,Anhui University of Technology,Ma’anshan 243002,China
关键词:
贝叶斯估计模糊寿命隶属函数正态分布
Keywords:
Bayesian estimationfuzzy lifetimemembership functionsnormal distribution
分类号:
O213.2
文献标志码:
A
摘要:
在参数估计中,寿命数据是非常重要的. 传统的估计是基于完全精确的寿命数据. 然而,在实际中由于种种原因,有时收集的数据往往是不精确的. 这样,参数的模糊估计方法就十分必要. 本文将贝叶斯估计方法与模糊集理论相结合,给出了正态总体中两参数的模糊贝叶斯估计. 最后,用一个数值例子演示了本文的方法.
Abstract:
Lifetime data is important to parameter estimation. Conventional estimation needs a lot of precise data. In real world,however,the collected data is often imprecise or vague due to all kinds of factors. Thus,the fuzzy Bayesian estimation is just essential. In this paper,the fuzzy bayesian estimators of two parameters based on normal distribution are given by combining fuzzy sets theory with Bayesian estimation approach. In the final section,a numerical example is used to demonstrate the proposed approach.

参考文献/References:

[1] Wu Hsienchung. Fuzzy reliability estimation using Bayesian approach[J]. Computer and Industrial Engineering,2004,46:467-493.
[2]Wu Hsienchung. Fuzzy Bayesian system reliability assessment based on exponentical distribution[J]. Applied Mathematical Modeling,2006,30:509-530.
[3]Taheri S M,Zarei R. Bayesian system reliability assesment under the vague enviroment[J]. Applied Soft Computing,2011,11:1 614-1 622.
[4]Latife G?rkemli,Selda Kapan Ulusoy. Fuzzy Bayesian reliabity and availability analysis of production systems[J]. Computers and Industrial Engineering,2010,59:690-696.
[5]Chou K C,Yuan J. Fuzzy Bayesian approach to reliability of existing structures[J]. Struct Eng,1993,119:3 276-3 290.
[6]Viertl R. On statistical inference for non-precise data[J]. Environmentrics,1997,8:541-568.
[7]Viertl R,Gurker W. Reliability estimation based on fuzzy lifetime data[C]//Onisawa T,Kacprzyk J. Reliability and Safety Analyses Under Fuzziness. Heidelberg:Physica Verlag,1995:163-168.
[8]Huang Hongzhong,Zuo Ming J,Sun Zhanquan,et al. Byesian reliability analysis for fuzzy lifetime data[J]. Fuzzy Sets and Systems,2006,157:1 674-1 686.
[9]Liu Yu,Huang Hongzhong,Li Yanfeng,et al. Optimal preventive maintenance policy under fuzzy Bayesian reliability assessment enviroments[J]. IIE Transactions,2010,42:734-745.
[10]Berger J O. Statistical Decision Theory and Bayesian Analysis[M]. New York:Springer,1985:32-38.
[11]Kotz S,Wu X Z. Modern Bayes Statistics[M]. Beijing:Chinese Statistic Press,2000.
[12]Press S J. Bayesian Statisticcs:Principles,Models,and Applications[M]. New York:Wiley,1989.
[13]Simith J Q. Decision Analysis:A Bayesian Approach[M]. London:Chapman and Hall,1988.
[14]Zhang R T,Chen H F. Bayes Statistics[M]. Beijing:Science Press,1991.
[15]Peng Z Z,Sun Y Y. Fuzzy Mathematics and its Application[M]. Wuhan:Wuhan University Press,2007.
[16]Pur M L,Ralescu D A. Fuzzy random variables[J]. J Math Anal,1986,114:409-422.
[17]Mao S S,Wang J L,Pu X L,et al. Advanced Mathematics Statistics[M]. Beijing:Advanced Education Press,2004.

备注/Memo

备注/Memo:
Received data:2014-01-29.
Foundation item:Supported by the National Natural Science Foundation of China(31300125).
Corresponding author:Tang Shengdao,Ph.D,professor,majored in reliability theory. E-mail:shdtang@ahut.edu.cn
更新日期/Last Update: 2015-03-30