[1]颜晓光,徐爱民.关于Ding投射范畴的稳定性[J].南京师大学报(自然科学版),2015,38(01):25.
 Yan Xiaoguang,Xu Aimin.On Stability of Ding Projective Categories[J].Journal of Nanjing Normal University(Natural Science Edition),2015,38(01):25.
点击复制

关于Ding投射范畴的稳定性()
分享到:

《南京师大学报》(自然科学版)[ISSN:1001-4616/CN:32-1239/N]

卷:
第38卷
期数:
2015年01期
页码:
25
栏目:
数学
出版日期:
2015-06-30

文章信息/Info

Title:
On Stability of Ding Projective Categories
作者:
颜晓光1徐爱民2
(1.南京晓庄学院数学与信息技术学院,江苏 南京 211171)(2.曲阜师范大学数学科学学院,山东 曲阜 273165)
Author(s):
Yan Xiaoguang1Xu Aimin2
(1.School of Mathematics and Information Technology,Nanjing Xiaozhuang University,Nanjing 211171,China)(2.School of Mathematical Sciences,Qufu Normal University,Qufu 273165,China)
关键词:
Ding投射模Ding投射复形稳定性
Keywords:
Ding projective moduleDing projective complexstability
分类号:
O154.2
文献标志码:
A
摘要:
首先,证明了以Ding投射模为对象,利用定义Ding投射模的方法构造出的模仍然是Ding投射模. 其次,引进了Ding投射复形并利用Ding投射模刻画了此类复形. 同时,利用复形的Ding投射维数刻画了n-FC环. 最后,证明了Ding投射复形范畴也具有类似Ding投射模范畴的稳定性.
Abstract:
We show that an iteration of the procedure used to define Ding projective modules yields exactly Ding projective modules. Then we introduce Ding projective complexes,and characterize those complexes by Ding projective modules. Moreover,we characterize n-FC rings with Ding projective dimension of complexes. Finally,we prove that the category of Ding projective complexes also has some kind of stability.

参考文献/References:

[1] Auslander M,Bridger M. Stable module theory[J]. Mem Amer Math Soc,1969,94:1-146.
[2]Enochs E E,Jenda O M G. Gorenstein injective and projective modules[J]. Math Z,1995,220(4):611-633.
[3]Holm H. Gorenstein homological dimensions[J]. J Pure Appl Algebra,2004,189:167-193.
[4]Ding N Q,Li Y L,Mao L X. Strongly Gorenstein flat modules[J]. J Aust Math Soc,2009,86(3):323-338.
[5]Gillespie J. Model structure on modules over Ding-Chen rings[J]. Homology,Homotopy Appl,2010,12(1):61-73.
[6]Yang G,Liu Z K,Liang L. Ding projective and Ding injective modules[J]. Algebra Colloquim,2013,20(4):239-252.
[7]Sather-Wagstaff S,Sharif T,White D. Stability of Gorenstein categories[J]. J London Math Soc,2008,77:481-502.
[8]Enochs E E,Garcia Rozas J R. Gorenstein injective and projective complexes[J]. Comm Algebra,1998,26:1 657-1 674.
[9]Gillespie J. The flat model structure on Ch(R)[J]. Tran Amer Math Soc,2004,356(8):3 369-3 390.
[10]Enochs E E,Jenda O M G,Xu J Z. Orthogonality in the category of complexes[J]. Math J Okayama Univ,1996,38:25-46.
[11]Avramov L L,Foxby H B. Homological dimensions of unbounded complexes[J]. J Pure Appl Algebra,1991,71:129-155.
[12]Enochs E E,Garcia Rozas J R. Flat covers of complexes[J]. J Algebra,1998,210:86-102.
[13]Enochs E E,Garcia Rozas J R. Tensor products of complexes[J]. Math J Okayama Univ,1997,39:17-39.
[14]Mahdou N,Tamekkante M. Strongly Gorenstein flat modules and dimensions[J]. Chin Ann Math,2011,32B(4):533-548.
[15]Yang X Y,Liu Z K. Gorenstein projective,injective,and flat complexes[J]. Comm Algebra,2011,39:1 705-1 721.
[16]Colby R R. Rings wich have flat injective modules[J]. J Algebra,1975,35:239-252.
[17]Enochs E E,Jenda O M G. Relative Homological Algebra[M]. Berlin-New York:Walter de Gruyter,2000:214-254.
[18]Ding N Q,Chen J L. The flat dimensions of injective modules[J]. Manuscripta Math,1993,78:165-177.
[19]Holm H,Jogensen P. Cotorsion pairs induced by duality pairs[J]. J Commut Algebra,2009,1:621-633.
[20]Bennis D. Weak Gorenstein global dimension[J]. Int Electron J Algebra,2010,8:140-152.
[21]Enochs E E,Jenda O M G,Torrecillas B. Gorenstein flat modules[J]. Journal of Nanjing University Mathematical Biquarterly,1993,10:1-9.

备注/Memo

备注/Memo:
收稿日期:2014-06-17.
基金项目:国家自然科学基金天元专项(11226060)、江苏省高校自然科学基金(12KJD110006)、南京晓庄学院青年专项(2011NXY62).
通讯联系人:颜晓光,博士,副教授,研究方向:同调代数. E-mail:yanxg1109@163.com
更新日期/Last Update: 2015-03-30