[1]鞠恒荣,杨习贝,于化龙,等.决策粗糙集的属性约简准则研究[J].南京师大学报(自然科学版),2015,38(01):41.
 Ju Hengrong,Yang Xibei,Yu Hualong,et al.Research on Attribute Reduction Criteria in Decision-Theoretic Rough Set[J].Journal of Nanjing Normal University(Natural Science Edition),2015,38(01):41.
点击复制

决策粗糙集的属性约简准则研究()
分享到:

《南京师大学报》(自然科学版)[ISSN:1001-4616/CN:32-1239/N]

卷:
第38卷
期数:
2015年01期
页码:
41
栏目:
计算机科学
出版日期:
2015-06-30

文章信息/Info

Title:
Research on Attribute Reduction Criteria in Decision-Theoretic Rough Set
作者:
鞠恒荣12杨习贝123于化龙1戚 湧3杨静宇2
(1.江苏科技大学计算机科学与工程学院,江苏 镇江 212003)(2.高维信息智能感知与系统教育部重点实验室,江苏 南京 210094)(3.南京理工大学经济管理学院,江苏 南京 210094)
Author(s):
Ju Hengrong12Yang Xibei123Yu Hualong1Qi Yong3Yang Jingyu2
(1.School of Computer Science and Engineering,Jiangsu University of Science and Technology,Zhenjiang 212003,China)(2.Key Laboratory of Intelligent Perception and Systems for High-Dimensional Information,Nanjing University of Science and Technology,Ministry of Education,Nanjing 210094,China)(3.School of Economics and Management,Nanjing University of Science and Technology,Nanjing 210094,China)
关键词:
属性约简代价决策粗糙集决策单调一般性准则
Keywords:
attribute reductioncost criteriondecision-theoretic rough setdecision-monotonicitygenerality criterion
分类号:
TP18
文献标志码:
A
摘要:
属性约简是粗糙集理论研究的重要内容之一. 在传统Pawlak粗糙集模型中,随着属性数量的单调变化,下、上近似集也单调变化. 然而,在决策粗糙集模型中,随着属性的单调增加,下、上近似集有可能增加也有可能减少. 针对这一问题,从优化角度给出了决策单调准则、一般性准则和代价准则的适应性函数并通过遗传算法求得三种准则下的约简. 实验结果表明:决策单调准则约简获得了更多的正域规则; 一般性准则约简获取了最多的正域规则; 代价准则约简获得了最小的决策代价.
Abstract:
Attribute reduction is one of the important research issues in rough set theory. In classical Pawlak rough set,the lower and upper approximations are monotonic with respect to the set inclusion of attributes. However,in decision-theoretic rough set model,the lower and upper approximations may increase or decrease with respect to the increasing of attributes. To address this issue,from the viewpoint of optimization,fitness functions of the decision-monotonicity criterion,generality criterion and cost criterion have been proposed respectively. Genetic algorithm is also applied to compute reducts. The experimental results show that:the reducts based on decision-monotonicity criterion can generate more positive rules; the reducts based on generality criterion can generate most positive rules; the reducts based on cost criterion can obtain lowest decision costs.

参考文献/References:

[1] Yao Y Y,Wong S K M. A decision theoretic framework for approximating concepts[J]. International Journal of Man-Machine Studies,1992,37:793-809.
[2]Yao Y Y. The superiority of three-way decisions in probabilistic rough set models[J]. Information Sciences,2011,181:1 080-1 096.
[3]Jia X Y,Tang Z M,Liao W H,et al. On an optimization representation of decision-theoretic rough set model[J]. International Journal of Approximate Reasoning,2014,55:156-166.
[4]贾修一,李伟湋,商琳,等. 一种自适应求三枝决策中决策阈值的算法[J]. 电子学报,2011,39(11):2 520-2 525.
[5]贾修一,商琳. 一种求三支决策阈值的模拟退火算法[J]. 小型微型计算机系统,2013,34(11):2 603-2 606.
[6]Li H X,Zhou X Z,Huang B,et al. Cost-sensitive three-way decision:a sequential strategy[C]//Lingras P,Wolski M,Cornelis C,et al. RSKT 2013. LNCS,Heidelberg:Springer,2013,8 171:325-337.
[7]Liang D C,Liu D,Pedrycz W,et al. Triangular fuzzy decision-theoretic rough sets[J]. International Journal of Approximate Reasoning,2013,54(8):1 087-1 106.
[8]Liang D C,Liu D. Systematic studies on three-way decisions with interval-valued decision-theoretic rough sets[J]. Information Sciences,2014,276:186-203.
[9]Liu D,Li T R,Li H X. A multiple-category classification approach with decision-theoretic rough sets[J]. Fundamenta Informaticae,2012,115:173-188.
[10]Liu D,Li T R,Liang D C. Incorporating logistic regression to decision-theoretic rough sets for classification[J]. International Journal of Approximate Reasoning,2014,55(1):197-210.
[11]Qian Y H,Zhang H,Sang Y L,et al. Multigranulation decision-theoretic rough sets[J]. International Journal of Approximate Reasoning,2013,55(1):225-237.
[12]Zhou B. Multi-class decision-theoretic rough sets[J]. International Journal of Approximate Reasoning,2013,55(1):211-224.
[13]Deng X F,Yao Y Y. Decision-theoretic three-way approximations of fuzzy sets[J]. Information Sciences,2014,279:702-715.
[14]Ma X A,Wang G Y,Yu H,et al. Decision region distribution preservation reduction in decision-theoretic rough set model[J]. Information Sciences,2014,278:614-640.
[15]Li H X,Zhou X Z,Zhao J B,et al. Non-monotonic attribute reduction in decision-theoretic rough sets[J]. Fundamenta Informaticae,2013,126(4):415-432.
[16]Jia X Y,Liao W H,Tang Z M,et al. Minimum cost attribute reduction in decision-theoretic rough set models[J]. Information Sciences,2013,219:151-167.
[17]Yao Y Y,Zhao Y. Attribute reduction in decision-theoretic rough set models[J]. Information Sciences,2008,178:3 356-3 373.
[18]Zhao Y,Wong S K,Yao Y Y. A note on attribute reduction in the decision-theoretic rough set model[C]//Peters J F,Skowron A,Chan C C,et al. TRS . LNCS,Heidelberg:Springer,2011,6 499:260-275.
[19]鞠恒荣,马兴斌,杨习贝,等. 不完备信息系统中测试代价敏感的可变精度分类粗糙集[J]. 智能系统学报,2014,9(2):219-223.
[20]Yang X B,Qi Y S,Song X N,et al. Test cost sensitive multigranulation rough set:model and minimal cost selection[J]. Information Sciences,2013,250:184-199.
[21]Yang X B,Yang J Y. Incomplete Information System and Rough Set Theory:Model and Attribute Reductions[M]. Beijing:Science Press,and Berlin Heidelberg:Springer,2012.

相似文献/References:

[1]陆 悠,华 泽,奚雪峰,等.一种面向增删操作的粗糙集属性约简更新算法[J].南京师大学报(自然科学版),2015,38(01):48.
 Lu You,Hua Ze,Xi Xuefeng,et al.An Attribute Reduction Update Algorithm for Object’sAdding-Deleting Based on Rough Set Theory[J].Journal of Nanjing Normal University(Natural Science Edition),2015,38(01):48.
[2]吴婷婷,李 艳,郭娜娜,等.基于优势-等价关系的属性约简算法[J].南京师大学报(自然科学版),2017,40(03):45.[doi:10.3969/j.issn.1001-4616.2017.03.007]
 Wu Tingting,Li Yan,Guo Nana,et al.Attribute Reduction Algorithms Based on Dominance-Equivalence Relations[J].Journal of Nanjing Normal University(Natural Science Edition),2017,40(01):45.[doi:10.3969/j.issn.1001-4616.2017.03.007]

备注/Memo

备注/Memo:
收稿日期:2014-08-16.
基金项目:国家自然科学基金(61100116、 61272419、 61305058)、 江苏省自然科学基金(BK2011492、 BK2012700、 BK20130471)、 高维信息智能感知与系统教育部重点实验室(南京理工大学)开放基金(30920130122005)、 中国博士后科学基金(2014M550293).
通讯联系人:杨习贝,博士后,副教授,研究方向:粗糙集、粒计算、知识发现. E-mail:zhenjiangyangxibei@163.com
更新日期/Last Update: 2015-03-30