[1]高 娜,杨 明.一种改进的结合标签和评分的协同过滤推荐算法[J].南京师大学报(自然科学版),2015,38(01):98.
 Gao Na,Yang Ming.An Improved Unifying Tags and Ratings Collaborative Filteringfor Recommendation System[J].Journal of Nanjing Normal University(Natural Science Edition),2015,38(01):98.
点击复制

一种改进的结合标签和评分的协同过滤推荐算法()
分享到:

《南京师大学报》(自然科学版)[ISSN:1001-4616/CN:32-1239/N]

卷:
第38卷
期数:
2015年01期
页码:
98
栏目:
计算机科学
出版日期:
2015-06-30

文章信息/Info

Title:
An Improved Unifying Tags and Ratings Collaborative Filteringfor Recommendation System
作者:
高 娜杨 明
南京师范大学计算机科学与技术学院,江苏 南京 210023
Author(s):
Gao NaYang Ming
School of Computer Science and Technology,Nanjing Normal University,Nanjing 210023,China
关键词:
协同过滤标签推荐系统稀疏性
Keywords:
Collaborative Filteringtagrecommendation systemsparsity
分类号:
TP391
文献标志码:
A
摘要:
推荐系统由于其数据量庞大的原因,已经成为大数据领域研究的一个热点. 而协同过滤算法是推荐系统中最著名的算法之一. 传统协同过滤算法在利用评分矩阵进行推荐时,面临数据稀疏性问题,从而严重影响推荐的质量. 同时,推荐系统中存在大量的描述用户和产品属性特征的标签信息,把这些标签信息融入到传统的推荐算法中是解决稀疏性的一个有效方法. 因此,针对稀疏性问题,本文提出了一种结合标签和评分的协同过滤推荐算法. 该算法结合标签信息和评分数据共同计算用户之间或产品之间的相似性,进而为用户产生推荐. 实验结果表明,本文提出的算法可以有效解决数据稀疏性问题,同时可以提高推荐系统的准确性.
Abstract:
The recommendation system has become the hot topic widely studied in the field of big data due to the massive amounts of data it contains. While the collaborative filtering algorithm is one of the most popular approach in the recommendation system. When making recommendations using the traditional collaborative filtering(CF)algorithms based on ratings matrix,we face the problem of sparsity that seriously impairs the quality of recommendation. Meanwhile,there is a large number of tags information that describe the attribute characteristics of users and items. Integrating these tags information into the traditional recommendation algorithms is a promising means to alleviate the sparsity problem. Therefore,to address the sparsity problem,this paper proposes a new collaborative filtering recommendation algorithm that integrates the tags and ratings,named UTR-CF. This algorithm utilizes the tags information and the ratings data simultaneously to compute the similarity between users or items,and then generate the recommendations. The experimental results indicate that the newly developed algorithm can alleviate the sparsity problem,and improve the accuracy of recommendation system simultaneously.

参考文献/References:

[1] Resnick P,Iacovou N,Suchak M,et al. Grouplens:an open architecture for collaborative filtering of netnews[C]//Proceedings of the 1994 ACM Conference on Computer Supported Cooperative Work. New York,USA:Chapel Hill Press,1994:175-186.
[2]Delgado J,Ishii N. Memory-based weighted-majority prediction for recommender systems[C]//Proceedings of ACM SIGIR’99 Workshop on Recommender Systems. UC,USA:Berkeley Press,1999:251-257.
[3]Marlin B. Modeling user rating profiles for collaborative filtering[C]//Advances in Neural Information Processing Systems. Toronto,Canada:MIT Press,2003.
[4]Sarwar B,Karypis G,Konstan J,et al. Item-based collaborative filtering recommendation algorithms[C]//Proceedings of the 10th Internation Conference on World Wide Web. New York:ACM,2001:285-295.
[5]Koren Y,Bell R,Volinsky C. Matrix factorization techniques for recommender systems[J]. Computer,2009,42(8):30-37.
[6]Xu J A,Araki K. A SVM-based personal recommendation system for TV programs[C]//Proceedings of Conference on Multi-Media Modeling. Beijing:IEEE,2006:4.
[7]Nikovski D,Kulev V. Induction of compact decision trees for personalized recommendation[C]//Proceedings of the 2006 ACM Symposium on Applied Computing. Dijon,France:ACM,2006:575-581.
[8]Sarwar B,Karypis G,Konstan J A,et al. Application of dimensionality reduction in recommender system-a case study[R]. Minneapolis:Minnesota Univ Minneapolis Dept of Computer Science,2000.
[9]Wang Z,Wang Y,Wu H. Tags meet ratings:improving collaborative filtering with tag-based neighborhood method[C]//Proceedings of the Workshop on Social Recommender Systems. Hongkong,China:ACM,2010.
[10]Ji H,Li J,Ren C,et al. Hybrid collaborative filtering model for improved recommendation[C]//2013 IEEE International Conference on Service Operations and Logistics,and Informatics(SOLI). Dongguan:IEEE,2013:142-145.
[11]Wang J,de Vries A P,Reinders M J T. Unifying user-based and item-based collaborative filtering approaches by similarity fusion[C]//Proceedings of the 29th Annual Internation ACM SIGIR Conference on Research and Development in Information Retrieval. Washington,USA:ACM,2006:501-508.
[12]Riedl J,Konstan J. Movielens dataset[EB/OL].(1998-10-19)[2008-07-18]http://www.grouplens.org/data/.

相似文献/References:

[1]燕 存,吉根林.Item-Based并行协同过滤推荐算法的设计与实现[J].南京师大学报(自然科学版),2014,37(01):71.
 Yan Cun,Ji Genlin.Design and Implementation of Item-Based Parallel Collaborative Filtering Algorithm[J].Journal of Nanjing Normal University(Natural Science Edition),2014,37(01):71.

备注/Memo

备注/Memo:
收稿日期:2014-09-30.
基金项目:国家自然科学基金重点、面上(61432008、61272222).
通讯联系人:高娜,硕士,研究方向:机器学习、模式识别. E-mail:gaonahao@126.com
更新日期/Last Update: 2015-03-30