[1]许 金,谷 琼,蔡之华,等.基于自适应ε占优的多目标差分演化算法[J].南京师大学报(自然科学版),2015,38(01):119.
 Xu Jin,Gu Qiong,Cai Zhihua,et al.Differential Evolution Algorithm for Multi-Objective OptimizationBased on Adaptive ε-Dominance[J].Journal of Nanjing Normal University(Natural Science Edition),2015,38(01):119.
点击复制

基于自适应ε占优的多目标差分演化算法()
分享到:

《南京师大学报》(自然科学版)[ISSN:1001-4616/CN:32-1239/N]

卷:
第38卷
期数:
2015年01期
页码:
119
栏目:
计算机科学
出版日期:
2015-06-30

文章信息/Info

Title:
Differential Evolution Algorithm for Multi-Objective OptimizationBased on Adaptive ε-Dominance
作者:
许 金12谷 琼13蔡之华2龚文引2
(1.湖北文理学院数学与计算机科学学院,湖北 襄阳 441053)(2.中国地质大学计算机学院,湖北 武汉 430074)(3.西南大学逻辑与智能研究中心,重庆 400715)
Author(s):
Xu Jin12Gu Qiong13Cai Zhihua2Gong Wenyin2
(1.School of Mathematics and Computer Science,Hubei University of Arts and Science,Xiangyang 441053,China)(2.School of Computer Science,China University of Geosciences,Wuhan 430074,China)(3.Institute of Logic and Intelligence,Southwest University,Chongqing 400715,China)
关键词:
多目标优化Pareto最优解差分演化正交设计自适应ε占优
Keywords:
multi-objective optimizationPareto optimal solutiondifferential evolutionorthogonal designadaptive ε-dominance
分类号:
TP301.6
文献标志码:
A
摘要:
求解多目标优化问题最重要的目的就是获得尽可能逼近真实最优解和分布性良好的非支配解集. 为此,本文提出了一种基于自适应ε占优的正交多目标差分演化算法,该算法具有如下特征:1.利用正交设计和连续空间的量化来产生具有良好分布性的初始演化种群,不仅能降低算法的时间复杂度,也能使演化充分利用种群中的个体; 2.采用在线Archive种群来保存算法求得的非支配解,并用自适应的ε占优更新Archive种群,以自适应的方式维持种群的多样性、分布性. 最后通过5个标准测试函数对算法的有效性进行了测试,并与其他的一些多目标优化算法进行了对比,实验结果显示,算法能够很好地逼近Pareto前沿,并具有良好的分布性.
Abstract:
The purpose to solve multi-objective optimization is to get solutions closing to the true Pareto front as much as possible and having good diversity. To meet these two demands,an algorithm is proposed in this paper,which has these characteristics:firstly,it adopts the orthogonal design method with quantization technology to generate initial population whose individuals are scattered uniformly over the target search space. So the algorithm can use them sufficiently in the subsequent iterations. What’s more,it is based on an adaptive ε concept to obtain a good distribution along the true Pareto-optimal solutions. Finally,experiments on five benchmark problems with different features have shown that this algorithm does well not only in distribution,but also in convergence when compared to other evolution algorithms.

参考文献/References:

[1] 安伟刚. 多目标优化方法研究及其工程应用[D]. 西安:西北工业大学航空学院,2005.
[2]Schaffer J D. Multiple objective optimization with vector evaluated genetic algorithms[C]//Proceedings of the 1st International Conference on Genetic Algorithms.USA:Pittsburgh,1986(2):93-100.
[3]Srinivas N,Kalyanmoy D. Multi-objective optimization using the nondominated sorting in genetic algorithms[J]. Evolution Computation,1994,2(3):221-248.
[4]Tadahiko M,Hisao I. MOGA:multi-objective genetic algorithms[C]//Proceedings of the 2nd IEEE International Conference on Evolutionary Computing. Perth,Australia:IEEE Press,1995(3):289-294.
[5]Jeffrey H,Nicholas N. Multi-objective optimization using the niched pareto genetic algorithm,technical report 93005[R]. Urbana,Illinois,USA:University of Illinois at Urbana Champaign,1993.
[6]Joshua D K,David W C. The pareto archive evolutionary strategy:a new baseline algorithm for multiobjective optimization[C]//Proceedings of the 1999 Congress on Evolutionary Computation. Washington D C,US:IEEE Press,1999:98-105.
[7]Eckart Z,Lothar T. An evolutionary algorithm for multi-objective optimization:the strength pareto approach,technical report 43[R]. Zurich,Switzerland:Swiss Federal Institute of Echnology. 1998:411-436.
[8]Kalyanmoy D,Samir A,Amrit P,et al. A fast elitist non-dominate sorting genetic algorithm for multi-objective optimization:NSGA-II[J]. Transactions on Evolutionary Computation,2002,6(2):182-197.
[9]Zitzler E,Laumanns M,Thiele L. SPEA2:Improving the strength pareto evolutionary algorithm,technical report TIK-Report 103[R]. Swiss:Swiss Federal Institute of Technology Zurich(ETH),2001.
[10]王宇平,焦永昌,张福顺. 解多目标优化的均匀正交遗传算法[J]. 系统工程学报,2003,13:481-486.
[11]曾三友,魏巍,康立山. 基于正交设计的多目标演化算法[J]. 计算机学报,2005,28(7):1 153-1 162.
[12]关世华,寇纪淞,李敏强. 基于ε-约束方法的Lagrangian多目标协同进化算法[J]. 系统工程与电子技术,2002,24(9):33-37.
[13]Shi C,Li Q Y,Shi Z Z. A quick multi-objective evolutionary algorithm based on domination tree[J]. Journal Software,2007,18(3):505-516.
[14]Gong W,Cai Z,Ling C. ODE:a fast and robust differential evolution based on orthogonal[C]//LNAI 4304:pROC of Advances in Artificial Intelligence. Berlin:Springer,2006:709-718.
[15]公茂果,焦李成,杨咚咚,等. 进化多目标优化算法研究[J]. 软件学报,2009,2(20):271-289.
[16]龚文引,蔡之华. 基于ε占优的正交多目标差分演化算法研究[J]. 计算机研究与发展,2009(4):655-666.
[17]Leung Y,Wang Y. An orthogonal genetic algorithm with quantization for global numerical optimization[J]. IEEE Transaction on Evolutionary Computation,2001,5(1):41-53.
[18]Gong W Y,Cai Z H. An improved multi-objective differential evolution based on Pareto adaptive ε-dominance and orthogonal design[J]. European Journal of Operational Research,2009,198:576-601.
[19]罗辞勇,陈民铀,张聪誉. 采用循环拥挤排序策略的改进NSGA-II算法[J]. 控制与决策,2010,25(2):227-231.
[20]陈民铀,张聪誉,罗辞勇. 自适应进化多目标粒子群算法[J]. 控制与决策,2009,24(12):1 851-1 855.
[21]贺群,程格,安军辉,等. 基于Pareto的多目标克隆进化算法[J]. 计算机科学,2012,39(6A):489-492.
[22]杨尚军,王社伟,陶军,等. 基于混合细菌觅食算法的多目标优化方法[J]. 计算机仿真,2012,29(6):218-222.
[23]RobiDcˇ T,FilipiDcˇ B. DEMO:Differential evolution for multiobjective optimization[C]//LNCS 3410:Proc of EMO’05. Berlin:Springer,2005:520-533.
[24]Deb K,Mohan M,Mishra S. Evaluating the ε-domination based multi-objective evolutionary algorithm for a quick computation of Pareto-optimal solutions[J]. Evolutionary Computation,2005,13(4):501-525.
[25]Zitzler E,Thiele L,Laumanns M,et al. Performance assessment of multi-objective optimizer:an analysis and review[J]. IEEE Trans on Evolutionary Computation,2003,7(2):117-132.

相似文献/References:

[1]李滢,童维勤,亢朝峰,等.基于QoS多目标优化的组合服务执行路径的选择[J].南京师大学报(自然科学版),2012,35(03):125.
 Li Ying,Tong Weiqing,Kang Chaofeng,et al.The QoS-Based Multi-Objective Optimization Algorithm of the Composite Service Execution Path[J].Journal of Nanjing Normal University(Natural Science Edition),2012,35(01):125.
[2]梁星星,马 扬,冯旸赫,等.面向多旅行商问题的多目标模拟退火算法研究[J].南京师大学报(自然科学版),2017,40(03):80.[doi:10.3969/j.issn.1001-4616.2017.03.012]
 Liang Xingxing,Ma Yang,Feng Yanghe,et al.Research on Multi-objective Simulated Annealing Algorithmfor Multi-traveling Salesman Problem[J].Journal of Nanjing Normal University(Natural Science Edition),2017,40(01):80.[doi:10.3969/j.issn.1001-4616.2017.03.012]
[3]李二超,马玉泉.基于快速二层解修补策略的区间离散遗传算法[J].南京师大学报(自然科学版),2019,42(03):73.[doi:10.3969/j.issn.1001-4616.2019.03.010]
 Li Erchao,Ma Yuquan.Interval Discrete Genetic Algorithms Based on FastTwo-Level Solution Repair Strategy[J].Journal of Nanjing Normal University(Natural Science Edition),2019,42(01):73.[doi:10.3969/j.issn.1001-4616.2019.03.010]

备注/Memo

备注/Memo:
收稿日期:2014-08-20.
基金项目:国家自然科学基金(61203307)、湖北省科技支撑计划公益性科技研究类项目(2012BKB068)、中国博士后科学基金面上项目(2014M560700)、重庆博士后特别资助项目(XM2014057).
通讯联系人:谷琼,副教授,研究方向:智能计算,机器学习,网络舆情. E-mail:gujone@163.com
更新日期/Last Update: 2015-03-30