参考文献/References:
[1] Deok S K,Young S C,Dengue K. Euclidean Voronoi diagram of 3D balls and its computation via tracing edges[J]. Computer-Aided Design,2005,245(20):3 713-3 721.
[2]Cao A W,Yung T. Finding constrained and weighted Voronoi diagrams in the plane[J]. Computational Geometry:Theory and Applications,1998,283(16):1 027-1 035.
[3]Incur C,Deborah S,Xiao S,et al. Computing hierarchical curve-skeletons of 3D objects[J]. The Visual Computer,2005,89(11):895-907.
[4]Lawson W,Richard E P. Automated generation of control skeletons for use in animation[J]. The Visual Computer,2002,275(21):2 175-2 183.
[5]Taube G. A signal processing approach to fair surface design[C]//International Conference on Computer Graphics and Interactive Techniques. Los Angeles:The International Institute for Science,Technology and Education,1995.
[6]王林峰. 加权Laplace-Beltrami算子及相关问题研究[D]. 上海:华东师范大学数学学院,2007.
[7]李义琛. 点云模型骨架提取算法的研究与实现[D]. 南京:南京师范大学教育科学学院,2012.
[8]张亶,陈为,单开佳,等. 基于拉普拉斯算子的Snakes方法分析[J]. 计算机辅助设计与图形学学报,2005,6(20):527-531.
[9]Dieter M,Maria S,Rodrigo I S. On the number of higher order Delaunay triangulations[J]. Theoretical Computer Science,2011,281(45):41 229-41 235.
[10]Jonathan,Richard,Shewchuk. Reprint of:delaunay refinement algorithms for triangular mesh generation[J]. Computational Geometry:Theory and Applications,2014,365(78):15 081-15 090.
[11]Rodrigo I,Silveira,Marc van Kreveld. Towards a definition of higher order constrained Delaunay triangulations[J]. Computational Geometry:Theory and Applications,2008,424(21):1 051-1 059.
[12]Marian N. Delaunay configurations and multivariate splines:a generalization of a result of B N Delaunay[J]. Transactions of the American Mathematical Society,2007,207(20):3 597-3 602.
[13]金龙存. 3D点云复杂点云曲面重构关键算法研究[D]. 上海:上海大学计算机学院,2012.
[14]何学铭. 点云模型的孔洞修补技术研究[D]. 南京:南京师范大学教育科学学院,2013.
[15]丁帆. 点云数据三维网格构造方法研究[D]. 武汉:华中科技大学计算机学院,2007.
[16]Zhou K,Huang J,Snyder J. Large mesh deformation using the volumetric graph Laplacian[J]. ACM Transactions on Graphics,2005,217(20):1 207-1 213.
[17]Lipman Y,Sorkine O,Cohen-or D,et al. Differential coordinates for interactive mesh editing[C]//Proceedings of the International Conference on Shape Modeling and Applications. San Francisco:Morgan Kaufmann,2004.
[18]Gong W,Bertrand G. A simple parallel 3D thinning algorithm[C]//10th International Conference on Pattern Recognition. Istanbul:Nova Science Publishers,1990.
[19]Cornea N D,Demirci M F,Silver D,et al. 3D object retrieval using many-to-many matching of curve skeletons[C]//Proceedings of the International Conference on Shape Modeling and Applications. New York:Los Andes,2005.
[20]Kobatake S,Kawakubo Y,Suzuki S. Laplace pressure measurement on laser textured thin-film disk[J]. Teratology International,2003,364(26):10 631-10 642.
[21]Adam M B. Finite difference methods for the infinity Laplace and p-Laplace equations[J]. Journal of Computational and Applied Mathematics,2013,254(419):1 872-1 882.
[22]Humid R,Soon-Mo J,Themistocles M R. Laplace transform and Hyers-Ulam stability of linear differential equations[J]. Journal of Mathematical Analysis and Applications,2013,381(29):4 031-4 045.
[23]Tomasz J K,Krzysztof P,Igor R. Multivariate generalized Laplace distribution and related random fields[J]. Journal of Multivariate Analysis,2013,113(25):3 085-3 093.