[1]张晓兵,龚毅君,苏 莉,等.基于罗丹明螺环衍生物的荧光探针研究进展[J].南京师大学报(自然科学版),2015,38(02):1.
 Zhang Xiaobing,Gong Yijun,Su Li,et al.Fluorescent Probes Based on Rhodamine Spirocyclic Derivatives[J].Journal of Nanjing Normal University(Natural Science Edition),2015,38(02):1.
点击复制

基于罗丹明螺环衍生物的荧光探针研究进展()
分享到:

《南京师大学报》(自然科学版)[ISSN:1001-4616/CN:32-1239/N]

卷:
第38卷
期数:
2015年02期
页码:
1
栏目:
特约稿
出版日期:
2015-06-30

文章信息/Info

Title:
Fluorescent Probes Based on Rhodamine Spirocyclic Derivatives
作者:
张晓兵1龚毅君2苏 莉2毛国江2
(1.分子科学与生物医学实验室,化学生物传感与计量学国家重点实验室,湖南大学化学化工学院,湖南 长沙 410082) (2.河南师范大学化学化工学院,河南 新乡 453007)
Author(s):
Zhang Xiaobing1Gong Yijun2Su Li2Mao Guojiang2
(1.Molecular Science and Biomedicine Laboratory,State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering,Hunan University,Changsha 410082,China) (2.School of Chemistry and Chemical Engineering,Henan Normal University,Xinxiang 453007,China)
关键词:
罗丹明荧光探针螺环衍生物反应型探针配位型探针
Keywords:
rhodaminefluorescent probespirocyclic derivativecoordination-type probereaction-type probe
分类号:
O657.3
文献标志码:
A
摘要:
罗丹明螺环衍生物在目标物的诱导下可发生螺环的开关并导致荧光信号的改变,利用该原理构建荧光探针成为传感领域的研究热点. 在过去的10多年中,大量文献报道了基于罗丹明螺环衍生物的荧光探针用于多种目标物的检测,如金属离子(Cu2+、Hg2+、Fe3+、Zn2+、Cr3+、Ag+、Au+、Pb2+和Pd2+)、阴离子(OCl-、CN-和P2O4-7)、活性氧簇/活性氮簇、硫醇类化合物、pH值以及温度等等. 本综述将分类探讨已报道的罗丹明荧光探针的响应机理,并介绍其在生物分析方面的初步应用研究.
Abstract:
Spirocyclic derivatives of rhodamine dyes have been proven to be useful fluorescence sensing platforms,since the target-triggered ring-opening process of the spirocycle could result in turn-on fluorescence response. In the past ten years,a large number of rhodamine spirocyclic derivative-based fluorescent probes have been developed,with the analytic targets including various metal ions(Cu2+,Hg2+,Fe3+,Zn2+,Cr3+,Ag+,Au+,Pb2+,and Pd2+),anions(OCl-,CN-,and P2O4-7),reactive oxygen/nitrogen species,thiols,pH values,temperatures,etc. This review will introduce the response mechanisms of previously reported rhodamine spirocyclic probes,as well as their bioanalysis applications.

参考文献/References:

[1] Cho D,Sessler J L. Modern reaction-based indicator systems[J]. Chemical Society Reviews,2009,38:1 647-1 662.
[2]Quang D T,Kim J S. Fluoro- and chromogenic chemodosimeters for heavy metal ion detection in solution and biospecimens[J]. Chemical Reviews,2010,110:6 280-6 301.
[3]Yang Y,Zhao Q,Feng W,et al. Luminescent chemodosimeters for bioimaging[J]. Chemical Reviews,2013,113:192-270.
[4]Chomchai S,Thawatchai T. Chromogenic anion sensors[J]. Chemical Society Reviews,2003,32:192-202.
[5]Kim H N,Guo Z,Zhu W,et al. Recent progress on polymer-based fluorescent and colorimetric chemosensors[J]. Chemical Society Reviews,2011,40:79-93.
[6]Chen X,Pradhan T,Wang F,et al. Fluorescent chemosensors based on spiroring-opening of xanthenes and related derivatives[J]. Chemical Reviews,2012,112:1 910-1 956.
[7]Noelting E,Dziewonsky K. Zur kenntniss der rhodamine[J]. Berichte der Deutschen Chemischen Gesellschaft,1905,38:3 516-3 527.
[8]Amat-Guerri F,Costela A,Figuera J M,et al. Laser action from rhodamine 6G-doped poly(2-hydroxyethyl methacrylate)matrices with different crosslinking degrees[J]. Chemical Physics Letters,1993,209:352-356.
[9]Multhaup G,Schlicksupp A,Hesse L,et al. The amyloid precursor protein of alzheimer’s disease in the reduction of copper(Ⅱ)to copper(Ⅰ)[J]. Science,1996,271:1 406-1 409.
[10]Dujols V,Ford F,Czarnik A W. A long-wavelength fluorescent chemodosimeter selective for Cu(Ⅱ)ion in water[J]. Journal of the American Chemical Society,1997,119:7 386-7 387.
[11]Xiang Y,Tong A. Ratiometric and selective fluorescent chemodosimeter for Cu(Ⅱ)by Cu(Ⅱ)-induced oxidation[J]. Luminescence,2008,23:28-31.
[12]Yu M,Shi M,Chen Z,et al. Highly sensitive and fast responsive fluorescence turn-on chemodosimeter for Cu2+ and its application in live cell imaging[J]. Chemistry-A European Journal,2008,14:6 892-6 900.
[13]Yuan L,Lin W,Chen B,et al. Development of FRET-based ratiometric fluorescent Cu2+ chemodosimeters and the applications for living cell imaging[J]. Organic Letters,2012,14:432-435.
[14]Fan J,Zhan P,Hu M,et al. A fluorescent ratiometric chemodosimeter for Cu2+ based on TBET and its application in living cells[J]. Organic Letters,2013,15:492-495.
[15]Office of Water,Environmental Protection Agency. Mercury Update:Impact on Fish Advisories; EPA Fact Sheet EPA-823-F-01-011[M]. Washington,DC:Environmental Protection Agency,2001.
[16]Kim K N,Choi M G,Noh J H,et al. Rhodamine B hydrazide revisited:chemodosimetric Hg2+-selective signaling behavior in aqueous environments[J]. Bulletin of the Korean Chemical Society,2008,29:571-574.
[17]Yang Y,Yook K,Tae J. A rhodamine-based fluorescent and colorimetric chemodosimeter for the rapid detection of Hg2+ ions in aqueous media[J]. Journal of the American Chemical Society,2005,127:16 760-16 761.
[18]Du J,Fan J,Peng X,et al. A new fluorescent chemodosimeter for Hg2+:selectivity,sensitivity,and resistance to Cys and GSH[J]. Organic Letters,2010,12:476-479.
[19]Gong Y,Zhang X,Chen Z,et al. An efficient rhodamine thiospirolactam-based fluorescent probe for detection of Hg2+ in aqueous samples[J]. Analyst,2012,137:932-938.
[20]Liu W,Xu L,Zhang H,et al. Dithiolane linked thiorhodamine dimer for Hg2+ recognition in living cells[J]. Organic & Biomolecular Chemistry,2009,7:660-664.
[21]Zhang X,Xiao Y,Qian X. A ratiometric fluorescent probe based on FRET for imaging Hg2+ ions in living cells[J]. Angewandte Chemie International Edition,2008,47:8 025-8 029.
[22]Shang G,Gao X,Chen M,et al. A novel Hg2+ selective ratiometric fluorescent chemodosimeter based on an intramolecular FRET mechanism[J]. Journal of Fluorescence,2008,18:1 187-1 192.
[23]Yu H,Xiao Y,Guo H,et al. Convenient and efficient FRET platform featuring a rigid biphenyl spacer between rhodamine and BODIPY:transformation of‘turn-on’ sensors into ratiometric ones with dual emission[J]. Chemistry-A European Journal,2011,17:3 179-3 191.
[24]Gong Y,Zhang X,Zhang C,et al. Through bond energy transfer:a convenient and universal strategy toward efficient ratiometric fluorescent probe for bioimaging applications[J]. Analytical Chemistry,2012,84:10 777-10 784.
[25]Lee M H,Giap T V,Kim S H,et al. A novel strategy to selectively detect Fe(Ⅲ)in aqueous media driven by hydrolysis of a rhodamine 6G Schiff base[J]. Chemical Communications,2010,46:1 407-1 409.
[26]Chatterjee A,Santra M,Won N,et al. Selective fluorogenic and chromogenic probe for detection of silver ions and silver nanoparticles in aqueous media[J]. Journal of the American Chemical Society,2009,131:2 040-2 041.
[27]Shi W,Sun S,Li X,et al. Imaging different interactions of mercury and silver with live cells by a designed fluorescence probe rhodamine B selenolactone[J]. Inorganic Chemistry,2010,49:1 206-1 210.
[28]Jou M J,Chen X Q,Swamy K M K,et al. Highly selective fluorescent probe for Au3+ based on cyclization of propargylamide[J]. Chemical Communications,2009,45:7 218-7 220.
[29]Egorova O A,Seo H,Chatterjee A,et al. Reaction-based fluorescent sensing of Au(Ⅰ)/Au(Ⅲ)species:mechanistic implications on vinylgold intermediates[J]. Organic Letters,2010,12:401-403.
[30]Yang Y,Lee S,Tae J,et al. A gold(Ⅲ)ion-selective fluorescent probe and its application to bioimagings[J]. Organic Letters,2009,11:5 610-5 613.
[31]Liu T Z,Lee S D,Bhatnagar R S. Toxicity of palladium[J]. Toxicology Letters,1979,4:469-473.
[32]Jun M E,Ahn K H. Fluorogenic and chromogenic detection of palladium species through a catalytic conversion of a rhodamine B derivative[J]. Organic Letters,2010,12:2 790-2 793.
[33]Kenmoku S,Urano Y,Kojima H,et al. Development of a highly specific rhodamine-based fluorescence probe for hypochlorous acid and its application to real-time imaging of phagocytosis[J]. Journal of the American Chemical Society,2007,129:7 313-7 318.
[34]Chen X Q,Lee K,Ha E,et al. A specific and sensitive method for detection of hypochlorous acid for the imaging of microbe-induced HOCl production[J]. Chemical Communications,2011,47:4 373-4 375.
[35]Yang Y,Cho H J,Lee J,et al. A rhodamine-hydroxamic acid-based fluorescent probe for hypochlorous acid and its applications to biological imagings[J]. Organic Letters,2009,11:859-861.
[36]Chen X,Wang X,Wang S,et al. A highly selective and sensitive fluorescence probe for the hypochlorite anion[J]. Chemistry-A European Journal,2008,14:4 719-4 724.
[37]Zheng H,Shang G,Yang S,et al. Fluorogenic and chromogenic rhodamine spirolactam based probe for nitric oxide by spiro ring opening reaction[J]. Organic Letters,2008,10:2 357-2 360.
[38]Hu X,Wang J,Zhu X,et al. A copper(Ⅱ)rhodamine complex with a tripodal ligand as a highly selective fluorescence imaging agent for nitric oxide[J]. Chemical Communications,2011,47:11 507-11 509.
[39]Li H,Fan J,Wang J,et al. A fluorescent chemodosimeter specific for cysteine:effective discrimination of cysteine from homocysteine[J]. Chemical Communications,2009,45:5 904-5 906.
[40]Sidell F R,Borak J. Chemical warfare agents:Ⅱ.Nerve agents[J]. Annals of Emergency Medicine,1992,21:865-871.
[41]Han S,Xue Z,Wang Z,et al. Visual and fluorogenic detection of a nerve agent simulant via a Lossen rearrangement of rhodamine-hydroxamate[J]. Chemical Communications,2010,46:8 413-8 415.
[42]Wu X,Wu Z,Yang Y,et al. A highly sensitive fluorogenic chemodosimeter for rapid visual detection of phosgene[J]. Chemical Communications,2012,48:1 895-1 897.
[43]Kim H N,Nam S,Swamy K M K,et al. Rhodamine hydrazone derivatives as Hg2+ selective fluorescent and colorimetric chemosensors and their applications to bioimaging and microfluidic system[J]. Analyst,2011,136:1 339-1 343.
[44]Wu D,Huang W,Duan C,et al. Highly sensitive fluorescent probe for selective detection of Hg2+ in DMF aqueous media[J]. Inorganic Chemistry,2007,46:1 538-1 540.
[45]Shiraishi Y,Sumiya S,Kohno Y,et al. A rhodamine-cyclen conjugate as a highly sensitive and selective fluorescent chemosensor for Hg(Ⅱ)[J]. The Journal of Organic Chemistry,2008,73:8 571-8 574.
[46]Huang J,Xu Y,Qian X. A rhodamine-based Hg2+ sensor with high selectivity and sensitivity in aqueous solution:A NS2-containing receptor[J]. The Journal of Organic Chemistry,2009,74:2 167-2 170.
[47]Yang H,Zhou Z,Huang K,et al. Multisignaling optical-electrochemical sensor for Hg2+ based on a rhodamine derivative with a ferrocene unit[J]. Organic Letters,2007,9:4 729-4 732.
[48]Suresh M,Mishra S,Mishra S K,et al. Resonance energy transfer approach and a new ratiometric probe for Hg2+ in aqueous media and living organism[J]. Organic Letters,2009,11:2 740-2 743.
[49]Xiang Y,Tong A,Jin P,et al. New fluorescent rhodamine hydrazone chemosensor for Cu(Ⅱ)with high selectivity and sensitivity[J]. Organic Letters,2006,8:2 863-2 866.
[50]Zhao Y,Zhang X,Han Z,et al. Highly sensitive and selective colorimetric and off-on fluorescent chemosensor for Cu2+ in aqueous solution and living cells[J]. Analytical Chemistry,2009,81:7 022-7 030.
[51]Swamy K M K,Ko S,Kwon S K,et al. Boronic acid-linked fluorescent and colorimetric probes for copper ions[J]. Chemical Communications,2008,45:5 915-5 917.
[52]Zhang J F,Zhou Y,Yoon J,et al. Naphthalimide modified rhodamine derivative:ratiometric and selective fluorescent sensor for Cu2+ based on two different approaches[J]. Organic Letters,2010,12:3 852-3 855.
[53]Lee M H,Kim H J,Yoon S,et al. Metal ion induced FRET OFF-ON in tren/dansyl-appended rhodamine[J]. Organic Letters,2008,10:213-216.
[54]Xiang Y,Tong A. A new rhodamine-based chemosensor exhibiting selective Fe-amplified fluorescence[J]. Organic Letters,2006,8:1 549-1 552.
[55]Mao J,Wang L,Dou W,et al. Tuning the selectivity of two chemosensors to Fe(Ⅲ)and Cr(Ⅲ)[J]. Organic Letters,2007,9:4 567-4 570.
[56]Zhang L,Fan J,Peng X. X-ray crystallographic and photophysical properties of rhodamine-based chemosensor for Fe3+[J]. Spectrochimica Acta Part A,2009,73:398-402.
[57]Cuajungco M P,Lees G J. Zinc metabolism in the brain:relevance to human neurodegenerative disorders[J]. Neurobiology of Disease,1997,4:137-169.
[58]Choi D W,Koh J Y. Zinc and brain injury[J]. Annual Review of Neuroscience,1998,21:347-375.
[59]Suh S W,Jensen K B,Jensen M S. Histochemically-reactive zinc in amyloid plaques,angiopathy,and degenerating neurons of Alzheimer’s diseased brains[J]. Brain Research,2000,852:274-278.
[60]Mashraqui S H,Khan T,Sundaram S,et al. Rhodamine-pyridyl probe:a selective optical reporter for biologically important Zn2+[J]. Chemistry Letters,2009,38:730-731.
[61]Han Z,Zhang X,Li Z,et al. Efficient fluorescence resonance energy transfer-based ratiometric fluorescent cellular imaging probe for Zn2+ using a rhodamine spirolactam as a trigger[J]. Analytical Chemistry,2010,82:3 108-3 113.
[62]Needleman H L. Human Lead Exposure[M]. Boca Raton:CRC Press,1992.
[63]Kwon J Y,Jang Y J,Lee Y J,et al. A highly selective fluorescent chemosensor for Pb2+[J]. Journal of the American Chemical Society,2005,127:10 107-10 111.
[64]Hu Z,Lin C,Wang X,et al. Highly sensitive and selective turn-on fluorescent chemosensor for Pb2+ and Hg2+ based on a rhodamine-phenylurea conjugate[J]. Chemical Communications,2010,46:3 765-3 767.
[65]Arakawa H,Ahmad R,Naoui M,et al. A comparative study of calf thymus DNA binding to Cr(Ⅲ)and Cr(Ⅵ)ions. Evidence for the guanine N-7-chromium-phosphate chelate formation[J]. The Journal of Biological Chemistry,2000,275:10 150-10 153.
[66]Vincent J B. Quest for the molecular mechanism of chromium action and its relationship to diabetes[J]. Nutrition Reviews,2000,58:67-72.
[67]Huang K,Yang H,Zhou Z,et al. Multisignal chemosensor for Cr3+ and its application in bioimaging[J]. Organic Letters,2008,10:2 557-2 560.
[68]Zhou Z,Yu M,Yang H,et al. FRET-based sensor for imaging chromium(Ⅲ)in living cells[J]. Chemical Communications,2008,29:3 387-3 389.
[69]Li H,Fan J,Du J,et al. A fluorescent and colorimetric probe specific for palladium detection[J]. Chemical Communications,2010,46:1 079-1 081.
[70]Li H,Fan J,Song F,et al. Fluorescent probes for Pd2+ detection by allylidene-hydrazone ligands with excellent selectivity and large fluorescence enhancement[J]. Chemistry-A European Journal,2010,16:12 349-12 356.
[71]Kim H,Lee S,Lee J,et al. Rhodamine triazole-based fluorescent probe for the detection of Pt2+[J]. Organic Letters,2010,12:5 342-5 345.
[72]Huang W,Wu D,Guo D,et al. Efficient near-infrared emission of a Ytterbium(Ⅲ)compound with a green light rhodamine donor[J]. Dalton Transactions,2009,12:2 081-2 084.
[73]Martinez-Zaguilln R,Chinnock B F,Wald-Hopkins S,et al. [Ca2+]i and pHin homeostasis in Kaposi Sarcoma cells[J]. Cellular Physiology and Biochemistry,1996,6:169-184.
[74]Shimizu Y,Hunt S W. Regulating integrin-mediated adhesion:one more function for PI 3-kinase?[J]. Immunology Today,1996,17:565-573.
[75]Falke J J,Bass R B,Butler S L,et al. The two-component signaling pathway of bacterial chemotaxis:a molecular view of signal transduction by receptors,kinases,and adaptation enzymes[J]. Annual Review of Cell and Developmental Biology,1997,13:457-512.
[76]Satoh H,Hayashi H,Katoh H,et al. Na+/H+and Na+/Ca2+ exchange in regulation of[Na+]iand[Ca2+]i during metabolic inhibition[J]. American Journal of Physiology,1995,268:H1 239-1 248.
[77]Kogot-Levin A,Zeigler M,Ornoy A,et al. Mucolipidosis type Ⅳ:the effect of increased lysosomal pH on the abnormal lysosomal storage[J]. Pediatric Research,2009,65:686-690.
[78]Poschet J,Perkett E,Deretic V. Hyperacidification in cystic fibrosis:links with lung disease and new prospects for treatment[J]. Trends in Molecular Medicine,2002,8:512-519. [79]Best Q A,Xu R,McCaroll M E,et al. Design and investigation of a series of rhodamine-based fluorescent probes for optical measurements of pH[J]. Organic Letters,2010,12:3 219-3 221.
[80]Xue Z,Chen M,Chen J,et al. A rhodamine-benzimidazole based sensor for selective imaging of acidic pH[J]. RSC Advances,2014,4:374-378.
[81]Zhu H,Fan J,Xu Q,et al. Imaging of lysosomal pH changes with a fluorescent sensor containing a novel lysosome-locating group[J]. Chemical Communications,2012,48:11 766-11 768.
[82]Shi X,Mao G,Zhang X,et al. Rhodamine-based fluorescent probe for direct bio-imaging of lysosomal pH changes[J]. Talanta,2014,130:356-362.
[83]Lee M H,Han J H,Lee J H,et al. Two-color probe to monitor a wide range of pH values in cells[J]. Angewandte Chemie International Edition,2013,52:6 206-6 209.
[84]Fan J,Li C,Li H,et al. A ratiometric lysosomal pH chemosensor based on fluorescence resonance energy transfer[J]. Dyes and Pigments,2013,99:620-626.

相似文献/References:

[1]周希,江玉亮,马振毛,等.5-(4-溴苯基)-1,3,4-噁二唑-2-硫酮的合成及荧光性质研究[J].南京师大学报(自然科学版),2012,35(04):52.
 Zhou Xi,Jiang Yuliang,Ma Zhenmao,et al.5-(4-Bromophenyl)-1,3,4-Oxadiazole-2(3H)-Thione Synthesis and Spectroscopic Properties[J].Journal of Nanjing Normal University(Natural Science Edition),2012,35(02):52.
[2]杨 倩,臧欣欣,吴 婧,等.1-氰基-中氮茚-3-[N-(2-氨基乙基)]甲酰胺的合成及其Cu2+荧光探针行为[J].南京师大学报(自然科学版),2015,38(02):65.
 Yang Qian,Zang Xinxin,Wu Jing,et al.Studies on Synthesis of 1-Cyano-indolizine-3-[N-(2-aminoethyl)] Carboxamide and Its Application as Fluorescent Sensors for Cu2+[J].Journal of Nanjing Normal University(Natural Science Edition),2015,38(02):65.

备注/Memo

备注/Memo:
收稿日期:2014-09-16.
基金项目:国家自然科学基金(21325520、J1210040、21177036)、湖南省自然科学基金(11JJ1002).
通讯联系人:张晓兵,教授,博导,杰出青年基金获得者,研究方向:有机小分子荧光探针. E-mail:xbzhang@hnu.edu.cn
更新日期/Last Update: 2015-06-30