[1]高 俊,韩 民.Pd纳米粒子点阵的电子输运特征及其与纳米粒子覆盖率的关系[J].南京师大学报(自然科学版),2015,38(02):43.
 Gao Jun,Han Min.The Electron Transport Properties of Pd Nanoparticle Arrays and Its Relationship with the Coverage[J].Journal of Nanjing Normal University(Natural Science Edition),2015,38(02):43.
点击复制

Pd纳米粒子点阵的电子输运特征及其与纳米粒子覆盖率的关系()
分享到:

《南京师大学报》(自然科学版)[ISSN:1001-4616/CN:32-1239/N]

卷:
第38卷
期数:
2015年02期
页码:
43
栏目:
物理学
出版日期:
2015-06-30

文章信息/Info

Title:
The Electron Transport Properties of Pd Nanoparticle Arrays and Its Relationship with the Coverage
作者:
高 俊12韩 民2
(1.常熟理工学院物理与电子工程学院,江苏 常熟 215500) (2.南京大学固体微结构物理国家重点实验室,江苏 南京 210093)
Author(s):
Gao Jun12Han Min2
(1.College of Physics & Electronic Engineering,Changshu Institute of Technology,Changshu 215500,China) (2.National Laboratory of Solid State Microstructures,Nanjing University,Nanjing 210093,China)
关键词:
纳米粒子点阵覆盖率电子输运特性变程跳跃(VRH)隧道穿透
Keywords:
nanoparticle arrayscoveragequantum transport propertiesvariable range hopping(VRH)thermally activated tunneling
分类号:
O437
文献标志码:
A
摘要:
研究了Pd纳米粒子点阵在不同温度下的电子输运特性. 对于覆盖率达到渗流阈值附近的纳米粒子薄膜,其电导具有显著的量子输运的特征. 随着温度的降低,I-V特征曲线表现出越来越明显的非线性,满足Middleton-Wingreen(MW)模型所描述的标度律. 处于量子传导态的Pd纳米粒子阵列在低温下以变程跳跃(VRH)为主要输运方式,而在高温下则是以热激活隧穿为主要输运形式.
Abstract:
The electron transport properties of Pd nanoparticle arrays at different temperature is investigated. The coverage of the nanoparticles is controlled to approach the percolation threshold,the conductance of the nanoparticle films show obviously quantum transport behaviors. The I-V curves of the nanoparticle arrays become more and more nonlinear with the decrease of the temperature,and they can be fitted with the Middleton-Wingreen(MW)scaling model. For the nanoparticle arrays under quantum conducting state,variable range hopping(VRH)is the main electron transport mechanism at low temperature,while at high temperature,thermally activated tunneling become the dominant transport mechanism.

参考文献/References:

[1] Dirix Y,Bastiaansen C,Caseri W,et al. Oriented Pearl-Necklace arrays of metallic nanoparticles in polymers:a new route toward polarization-dependent color filters[J]. Adv Mater,1999,11(3):223-227.
[2]Knoll W. Interfaces and thin films as seen by bound electromagnetic waves[J]. Annu Rev Phys Chem,1998,49:569-638.
[3]Maier S A,Brongersma M L,Kik P G,et al. Plasmonics—a route to nanoscale optical devices[J]. Adv Mater,2001,13(19):1 501-1 505.
[4]Storhoff J J,Elghanian R,Mucic R C,et al. One-pot colorimetric differentiation of polynucleotides with single base imperfections using gold nanoparticle probes[J]. J Am Chem Soc,1998,120(9):1 959-1 964.
[5]Haes A J,Van Duyne R P. A nanoscale optical biosensor:sensitivity and selectivity of an approach based on the localized surface plasmon resonance spectroscopy of triangular silver nanoparticles[J]. J Am Chem Soc,2002,124(35):10 596-10 604.
[6]Cao Y W C,Jin R C,Mirkin C A. Nanoparticles with Raman spectroscopic fingerprints for DNA and RNA detection[J]. Science,2002,297(5 586):1 536-1 540.
[7]Kahl M,Voges E,Kostrewa S,et al. Periodically structured metallic substrates for SERS[J]. Sens Actuators:B,1998,51(1/2/3):285-291.
[8]Freeman R G,Grabar K C,Allison K J,et al. Self-assembled metal colloid monolayers:an approach to SERS substrates[J]. Science,1995,267(5 204):1 629-1 632.
[9]Suvakov M,Tadic B. Modeling collective charge transport in nanoparticle assemblies[J]. J Phys-Condens Mat,2010,22(16):123-201.
[10]Xie B,Liu L L,Peng X,et al. Optimizing hydrogen sensing behavior by controlling the coverage in Pd nanoparticle films[J]. J Phys Chem:C,2011,115(32):16 161-16 166.
[11]He L B,Chen X,Mu Y W,et al. Two-dimensional gradient Ag nanoparticle assemblies:multiscale fabrication and SERS applications[J]. Nanotechnology,2010,21(49):495-601.
[12]Middleton A A,Wingreen N S. Collective transport in arrays of small metallic dots[J]. Phys Rev Lett,1993,71(19):3 198-3 201.
[13]Simmons J G. Generalized formula for the electric tunnel effect between similar electrodes separated by a thin insulating film[J]. J Appl Phys,1963,34(6):1 793-1 803.
[14]Neugebauer C A,Webb M B. Electrical conduction mechanism in ultrathin,evaporated metal films[J]. J Appl Phys,1962,33(1):74-81.
[15]Mott N F. Electrons in disordered structures[J]. Adv Phys,1967,16(61):49-144.
[16]Mott N F,Davis E A. Conduction in non-crystalline systems. Ⅱ. Metal-insulator transition in a random array of centres[J]. Philosophical Magazine,1968,17(150):1 269-1 284.
[17]Greshnykh D,Fromsdorf A,Weller H,et al. On the electric conductivity of highly ordered monolayers of monodisperse metal nanoparticles[J]. Nano Lett,2009,9(1):473-478.
[18]Efros A L,Shklovskii B I. Coulomb gap and low-temperature conductivity of disordered systems[J]. J Phys C Solid State,1975,8(4):L49-L51.
[19]Beverly K C,Sampaio J F,Heath J R. Effects of size dispersion disorder on the charge transport in self-assembled 2-d ag nanoparticle arrays[J]. J Phys Chem B,2002,106(9):2 131-2 135.

备注/Memo

备注/Memo:
收稿日期:2014-07-04.
基金项目:江苏省高校科研产业化推广计划(JH10-2).
通讯联系人:高俊,讲师,研究方向:金属纳米材料电磁学、光学性质. E-mail:jungao@cslg. Cn
更新日期/Last Update: 2015-06-30