[1]吴 芸,徐 旺,丁红燕,等.人血纤肽片段分子在高分子材料表面吸附行为的分子模拟研究(英文)[J].南京师大学报(自然科学版),2015,38(02):49.
 Wu Yun,Xu Wang,Ding Hongyan,et al.Computational Investigation of Adsorption Behaviors of Human Fibrinopeptide Segment at Different Polymer Material Surfaces[J].Journal of Nanjing Normal University(Natural Science Edition),2015,38(02):49.
点击复制

人血纤肽片段分子在高分子材料表面吸附行为的分子模拟研究(英文)()
分享到:

《南京师大学报》(自然科学版)[ISSN:1001-4616/CN:32-1239/N]

卷:
第38卷
期数:
2015年02期
页码:
49
栏目:
化学
出版日期:
2015-06-30

文章信息/Info

Title:
Computational Investigation of Adsorption Behaviors of Human Fibrinopeptide Segment at Different Polymer Material Surfaces
作者:
吴 芸12徐 旺3丁红燕2邵科峰3赵 波3
(1.中国药科大学理学院,江苏 南京 211198) (2.淮阴工学院江苏省介入医疗器械研究重点实验室,江苏 淮安 223003) (3.南京师范大学化学与材料科学学院,江苏 南京 210023)
Author(s):
Wu Yun12Xu Wang3Ding Hongyan2Shao Kefeng3Zhao Bo3
(1.Department of Physical Chemistry,College of Science,China Pharmaceutical University,Nanjing 211198,China) (2.Jiangsu Provincial Key Laboratory for Interventional Medical Devices,Huaiyin Institute of Technology,Huaian 223003 China) (3.Jiangsu Key Laboratory of Biofunctional Materials,School of Chemistry and Materials Science,Nanjing Normal University,Nanjing 210023,China)
关键词:
抗凝血聚合物材料人血纤肽片段分子物理吸附分子模拟
Keywords:
anticoagulative polymer materialfibrinopeptide segmentphysical adsorptionmolecular simulation
分类号:
TB34
文献标志码:
A
摘要:
吸附是生物材料与血液接触后最先发生的重要现象,是研究抗凝血材料的重要环节. 本文以在凝血过程中起着重要作用的人血纤肽片段分子-Asp-Ser-Glu-Asp-Glu-(HFG)为研究对象,采用Materials Studio4.4软件包,在真空和水溶液环境中,我们分析了HFG分子在聚合物表面上的最短距离、吸附能和氢键作用,同时也得到了HFG分子不同的构型变化. 分析结果显示:亲水性表面更有利于吸附的进行; 随着疏水性的增强,吸附能逐渐减小,预示着疏水性聚合物材料有利于抗凝血性能的提高; 水介作用导致纤维蛋白原在表面上的排斥力增大,对提高材料的抗凝血性能有积极作用.
Abstract:
Since the adsorption behaviors of the peptides at material surfaces play an important role in many research fields and simulation studies can provide deep insights into more interaction details of the adsorption behaviors. A molecular simulation is performed using Materials Studio 4.4(MS 4.4)software package to investigate the physical adsorption behavior of the fibrinopeptide segment(HFG)separated from fibrinopeptide,which is the most important protein in the processes of hemeostasis and thrombosis,at three different kinds of polymeric biomaterials— polytetrafluoroethylene(PTFE),polyvinyl chloride(PVC),and Silicone Rubber(SR). The results suggest that the adsorption of HFG is weaker and weaker with the hydrophobicity increasing of the materials surfaces. The hydrophobic PTFE polymer materials show the best behavior to prevent the adsorption while the significant adsorption of HFG on the Silicon Rubber surface occur. Moreover,water also plays a promoting role to the interaction properties between the HFG and the polymer materials. The existence of water is strongly tend to take the peptide molecule away form the adsorption surface.

参考文献/References:

[1] Peppas N A,Langer R. New challenges in biomaterials[J]. Science,1994,263:1 715-1 720.
[2]Courtney J M,Forbes C D. Thrombosis on foreign surfaces[J]. Br Med Bull,1994,50:966-981.
[3]Le-Clech P,Chen V,Fane T A G. Fouling in membrane bioreactors used in wastewater treatment[J]. J Membr Sci,2006,284:17-53.
[4]Dobretsov S,Dahms H U,Qian P Y. Inhibition of biofouling by marine microorganisms and their metabolites[J]. Biofouling,2006,22:43-54.
[5]Schmidt D L,Brady R F,Lam K. Contact angle hysteresis,adhesion,and marine biofouling[J]. Langmuir,2004,20:2 830-2 836.
[6]Ostuni E,Chapman R G,Holmlin R E. A survey of structure-property relationships of surfaces that resist the adsorption of proteins[J]. Langmuir,2001,17:5 605-5 620.
[7]Halter P,Yamamoto R J. New challenges in biomaterials[J]. Biomater Appl,1988,2:317-327.
[8]Ratner B D,Hoffman A S,Schoen F J. Biomaterials Science:An Introduction to Materials in Medicine[M]. 2rd ed. San Diego:Elsevier,2004.
[9]Yasuda T,Okuno T,Yasuda H. Contact angle of water on polymer surfaces[J]. Langmuir,1994,10:2 435-2 439.
[10]Mao C,Zhu A P,Qiu Y Z. Introduction of O-butyrylchitosan with a photosensitive hetero-bifunctional crosslinking reagent to silicone rubber film by radiation grafting and its blood compatibility[J]. Colloids Surf B,2003,30:299-306.
[11]Mao C,Zhao W B,Zhu A P. A photochemical method for the surface modification of poly(vinyl chloride)with O-butyrylchitosan to improve blood compatibility[J]. Process Biochem,2004,39:1 151-1 157.
[12]Skarja G A,Brash J L,Bishop P. Protein and platelet interactions with thermally denatured fibrinogen and cross-linked fibrin coated surfaces[J]. Biomaterials,1998,19:2 129-2 138.
[13]Lindon J N,Mcmanama G,Kushner L. Does the conformation of adsorbed fibrinogen dictate platelet interactions with artificial surfaces?[J]. Blood,1986,68:355-362.
[14]Cacciafesta P,Humphris A D L,Jandt K D. Human plasma fibrinogen adsorption on ultraflat titanium oxide surfaces studied with atomic force microscopy[J]. Langmuir,2000,16:775-816.
[15]Feng L,Li S,Li Y. Super-hydrophobic surfaces:from natural to artificial[J]. Adv Mater,2002,14:1 857-1 860.
[16]Wertz C F,Santore M M. Fibrinogen adsorption on hydrophilic and hydrophobic surfaces:geometrical and energetic aspects of interfacial relaxations[J]. Langmuir,2002,18:706-715.
[17]Steiner G,Tunc S,Maitz M. Conformational changes during protein adsorption. FT-IR spectroscopic imaging of adsorbed fibrinogen layers[J]. Anal Chem,2007,79:1 311-1 316.
[18]Jamadagni S N,Godawat R,Garde S. How surface wettability affects the binding,folding,and dynamics of hydrophobic polymers at interfaces[J]. Langmuir,2009,25:13 092-13 099.
[19]Li Y,Chen X,Gu N. Computational investigation of interaction between nanoparticles and membranes:hydrophobic/hydrophilic effect[J]. J Phys Chem B,2008,112:16 647-16 653.
[20]Materials Studio v.4.4. Materials Studio v.4.4[M]. San Diego:Accelrys Inc.,2007.
[21]Sun H. COMPASS:An ab initio force-field optimized for condensed-phase applications-overview with details on alkane and benzene compounds[J]. J Phys Chem B,1998,102:7 338-7 364.
[22]Senaratne W,Andruzzi L,Ober C K. Self-assembled monolayers and polymer brushesin biotechnology:current applications and future perspectives[J]. Biomacromolecules,2005,6:2 427-2 448.
[23]He Y,Hower J,Chen S. Molecular simulation studies of protein interactions with zwitterionic phosphorylcholine self-assembled monolayersinthe presence of water[J]. Langmuir,2008,24:10 358-10 364.
[24]Chapman R G,Ostuni E,Lin Y. Preparation of mixed self-assembled mono-layers(SAMs)that resist adsorption of proteins using the reaction of amines with a SAM that presents interchain carboxylic anhydride groups[J]. Langmuir,2000,16:6 927-6 936.
[25]Ulman A. An Introduction to Ultrathin Organic Thin Films:From Langmuir Blodgett to Self-Assembly[M]. San Diego:Academic Press,1991.
[26]Cˇerny V. Thermodynamical approach to the traveling salesman problem:an efficient simulation algorithm[J]. J Optim Theory Appl,1985,45:41-51.
[27]Kirkpatrick S,Gelatt C D,Vecchi M P. Optimization by simulated annealing[J]. Science,1983,220:671-680.
[28]Metropolis N,Rosenbluth A W,Rosenbluth M N. Equation of state calculations by fast computing machines[J]. J Chem Phys,1953,21:1 087-1 093.
[29]Aristilde L,Marichal C,Mie he-Brendle J. Interactions of oxytetracycline with a smectite clay:a spectroscopic study with molecular simulations[J]. Environ Sci Technol,2010,44:7 839-7 845.
[30]Khaled K F. Molecular modeling and electrochemical investigations of the corrosion inhibition of nickel using some thiosemicarbazone derivatives[J]. J Appl Electrochem,2011,41:423-433.
[31]Khaled K F. Experimental,density function theory calculations and molecular dynamics simulations to investigate the adsorption of some thiourea derivatives on iron surface in nitric acid solutions[J]. Appl Surf Sci,2010,256:6 753-6 763.
[32]Khaled K F. Electrochemical behavior of nickel in nitric acid and its corrosion inhibition using some thiosemicarbazone derivatives[J]. Electrochim Acta,2010,55:5 375-5 383.
[33]Chunsrivirot S,Trout B L. Free energy of binding of a small molecule to an amorphous polymer in a solvent[J]. Langmuir,2011,27:6 910-6 919.
[34]Kasemo B. Biological surface science[J]. Surf Sci,2002,500:656-677.
[35]Vogler E A. Structure and reactivity of water at biomaterial surfaces[J]. Adv Colloid Interface Sci,1998,74:69-117.
[36]Tanaka M; Mochizuki A. Effect of water structure on blood compatibility-thermal analysis of water in poly(meth)acrylate[J]. J Biomed Mater Res A,2003,68A:684-695.
[37]Wu C,Chen M,Guo C,Peptide-TiO2 Interaction in aqueous solution:conformational dynamics of RGD using different water models[J]. J Phys Chem B,2010,114:4 692-4 701.
[38]Baker E N,Hubbard R E. Hydrogen bonding in globular proteins[J]. Prog Biophys Mol Biol,1984,44:97-179.
[39]Sigal G B,Mrksich M,Whitesides G M. Effect of surface wettability on the adsorption of proteins and detergents[J]. J Am Chem Soc,1998,120:3 464-3 473.
[40]Gessner A,Lieske A,Paulke B R. Influence of surface charge density on protein adsorption on polymeric nanoparticles:analysis by two-dimensional electrophoresis[J]. Eur J Pharm Biopharm,2002,54:165-170.
[41]Xie H G,Li X X,Lv G J. Effect of surface wettability and charge on protein adsorption onto implantable alginate-chitosan-alginate microcapsule surfaces[J]. J Biomed Mater Res A,2010,92:1 357-1 365.

备注/Memo

备注/Memo:
Received data:2014-04-10.
Foundation item:Supported by the Foundation of Jiangsu Provincial Key Laboratory for Interventional Medical Devices(jr1206),the Technology Support Program of Science and Technology Department of Jiangsu Province(BE2011196),and the Jiangsu Agricultural Science and Technology Innovation Fund Project(CX(12)3088).
Corresponding author:Wu Yun,associate professor,majored in physical chemistry. E-mail:wychem@126.com
更新日期/Last Update: 2015-06-30