[1]白 婧,吴桐思雨,王 期,等.利用谷氨酸棒状杆菌高效表达枯草芽孢杆菌的谷氨酰胺合成酶发酵生产L-谷氨酰胺[J].南京师大学报(自然科学版),2015,38(02):78.
 Bai Jing,Wu Tongsiyu,Wang Qi,et al.Glutamine Synthetase of Bacillus subtilis is Applied to Corynebacterium glutamicum Fermentation System to Produce L-Glutamine[J].Journal of Nanjing Normal University(Natural Science Edition),2015,38(02):78.
点击复制

利用谷氨酸棒状杆菌高效表达枯草芽孢杆菌的谷氨酰胺合成酶发酵生产L-谷氨酰胺()
分享到:

《南京师大学报》(自然科学版)[ISSN:1001-4616/CN:32-1239/N]

卷:
第38卷
期数:
2015年02期
页码:
78
栏目:
生命科学
出版日期:
2015-06-30

文章信息/Info

Title:
Glutamine Synthetase of Bacillus subtilis is Applied to Corynebacterium glutamicum Fermentation System to Produce L-Glutamine
作者:
白 婧吴桐思雨王 期殷志敏
南京师范大学生命科学学院,生物化学与生物制品研究所,江苏省分子医学重点实验室,江苏 南京 210023
Author(s):
Bai JingWu TongsiyuWang QiYin Zhimin
School of Life Sciences,Nanjing Normal University,Institute of Biochemistry and Biological Products, Jiangsu Province Key Laboratory for Molecular and Medical Biotechnology,Nanjing 210023,China
关键词:
谷氨酸棒状杆菌tac启动子mal启动子谷氨酰胺合成酶
Keywords:
Corynebacterium glutamicumpromoter tacpromoter malGlutamine synthetase
分类号:
Q789
文献标志码:
A
摘要:
谷氨酰胺合成酶(GS)是用于合成L-谷氨酰胺(L-Gln)过程中的关键酶,然而GS的酶活受到多种因素的影响,导致其酶活不强,产物L-Gln偏低. 本研究以GS的基因为研究对象,构建谷氨酸棒状杆菌(Corynebacterium glutamicum)的高效表达系统. 利用C.glutamicum中的两种强启动子:tac启动子(Ptac)和麦芽糖启动子(Pmal),比较不同启动子的作用下GS的酶活力; 其次,为了避免腺苷酰化对C.glutamicum的GS的抑制作用,将GS的腺苷酰化位点突变成苯丙氨酸(Tyr405Phe); 同时由于枯草芽孢杆菌(Bacillus subtilis)的GS不受腺苷酰化作用的影响,故将Bacillus subtilis的GS基因导入到C.glutamicum的表达系统中,比较两种基因来源不同GS的酶活高低,以期达到高产L-Gln的目的. 本研究第一次应用Bacillus subtilis来源的GS在C.glutamicum的系统中表达. 最终的结果表明,在C.glutamicum的表达系统中,Ptac比Pmal的效果更好,来自Bacillus subtilis的GS比来自C.glutamicum的GS酶活力更高. 重组菌BJ2有最高的酶活力和产量,L-Gln的最终产量达到32.5 g/L.
Abstract:
Glutamine synthetase(GS)is the key enzyme responsible for L-glutamine(L-Gln)synthesis. However,enzymatic activity of GS is influenced by many factors,leading to the low enzyme activity and the low production of L-Gln. In this study,in order to improve the yield of L-Gln,a high-effective expression system was constructed in Corynebacterium glutamicum with glnA gene. We tested two different strong promoters,promoter tac(Ptac),and promoter mal(Pmal),for a comparison of the activity of GS. After then,for avoiding the adenylylation in C.glutamicum,we constructed plasmids containing the point mutation of glnA,in which Tyr405 is replaced by a phenylalanine residue. Since the glutamine synthetase in Bacillus subtilis is not regulated via adenylylation,we also compared C.glutamicum GS activity with Bacillus subtilis’s to detect the enzyme activity in the given system. Light point of this study is to express GS of Bacillus subtilis in C.glutamicum expression system for the first time. The results reveal that promoter tac was more capable for producing L-Gln in C.glutamicum system. GS enzyme from Bacillus subtilis had the higher activity than C.glutamicum’s. The recombinant strain BJ2 has the highest GS activity and produce 32.5 g/L L-glutamine.

参考文献/References:

[1] Li Y,Yang G,Huang X,et al. Recombinant Glutamine Synthetase(GS)from C.glutamicum existed as both hexamers & dedocamers and C-terminal His-tag enhanced inclusion bodies formation in E.coli[J]. Applied Biochemistry and Biotechnology,2009,159(3):614-622.
[2]Beckers G,Nolden L,Burkovski A. Glutamate synthase of Corynebacterium glutamicum is not essential for glutamate synthesis and is regulated by the nitrogen status[J]. Microbiology,2001,147(Pt 11):2 961-2 970.
[3]Merrick M J,Edwards R A. Nitrogen control in bacteria[J]. Microbiol Rev,1995,59(4):604-622.
[4]Rehm N,Burkovski A. Engineering of nitrogen metabolism and its regulation in Corynebacterium glutamicum:influence on amino acid pools and production[J]. Applied Microbiology and Biotechnology,2010,89(2):239-248.
[5]Binder S,Siedler S,Marienhagen J,et al. Recombineering in Corynebacterium glutamicum combined with optical nanosensors:a general strategy for fast producer strain generation[J]. Nucleic Acids Research,2013,41(12):6 360-6 369.
[6]Behensky P,Stenzl V,Adamek F,et al. Conversion of glutamate to glutamine by permeabilized Corynebacterium glutamicum[J]. Folia Microbiol(Praha),1999,44(5):487-490.
[7]Ikeda M,Nakagawa S. The Corynebacterium glutamicum genome:features and impacts on biotechnological processes[J]. Appl Microbiol Biotechnol,2003,62(2/3):99-109.
[8]Kalinowski J,Bathe B,Bartels D,et al. The complete Corynebacterium glutamicum ATCC 13032 genome sequence and its impact on the production of L-aspartate-derived amino acids and vitamins[J]. J Biotechnol,2003,104(1/2/3):5-25.
[9]Rehm N,Burkovski A. Engineering of nitrogen metabolism and its regulation in Corynebacterium glutamicum:influence on amino acid pools and production[J]. Appl Microbiol Biotechnol,2011,89(2):239-248.
[10]Harper C,Hayward D,Wiid I,et al. Regulation of nitrogen metabolism in Mycobacterium tuberculosis:a comparison with mechanisms in Corynebacterium glutamicum and Streptomyces coelicolor[J]. IUBMB Life,2008,60(10):643-650.
[11]Silberbach M,Burkovski A. Application of global analysis techniques to Corynebacterium glutamicum:new insights into nitrogen regulation[J]. J Biotechnol,2006,126(1):101-110.
[12]Strosser J,Ludke A,Schaffer S,et al. Regulation of GlnK activity:modification,membrane sequestration and proteolysis as regulatory principles in the network of nitrogen control in Corynebacterium glutamicum[J]. Mol Microbiol,2004,54(1):132-147.
[13]Knoppova M,Phensaijai M,Vesely M,et al. Plasmid vectors for testing in vivo promoter activities in Corynebacterium glutamicum and Rhodococcus erythropolis[J]. Curr Microbiol,2007,55(3):234-239.
[14]Lee J. Development and characterization of expression vectors for Corynebacterium glutamicum[J]. J Microbiol Biotechnol,2014,24(1):70-79.
[15]Okibe N,Suzuki N,Inui M,et al. Isolation,evaluation and use of two strong,carbon source-inducible promoters from Corynebacterium glutamicum[J]. Letters in Applied Microbiology,2010,50(2):173-180.
[16]Wang Q,Min C,Yan T,et al. Production of glutamine synthetase in Escherichia coli using SUMO fusion partner and application to l-glutamine synthesis[J]. World Journal of Microbiology and Biotechnology,2011,27(11):2 603-2 610.
[17]Park J H,Lee S Y. Fermentative production of branched chain amino acids:a focus on metabolic engineering[J]. Applied Microbiology and Biotechnology,2009,85(3):491-506.
[18]Schmi R,Uhlemann E M,Nolden L,et al. Response to nitrogen starvation in Corynebacterium glutamicum[J]. FEMS Microbiol Lett,2000,187(1):83-88.
[19]Kusumoto I. Industrial production of L-glutamine[J]. J Nutr,2001,131(Suppl 9):2 552S-2 555S.
[20]Lee Y B,Jo J H,Kim M H,et al. Enhanced production of α-ketoglutarate by fed-batch culture in the metabolically engineered strains of Corynebacterium glutamicum[J]. Biotechnology and Bioprocess Engineering,2013,18(4):770-777.
[21]Park J H,Lee S Y. Fermentative production of branched chain amino acids:a focus on metabolic engineering[J]. Appl Microbiol Biotechnol,2010,85(3):491-506.
[22]An S J,Yim S S,Jeong K J. Development of a secretion system for the production of heterologous proteins in Corynebacterium glutamicum using the Porin B signal peptide[J]. Protein Expr Purif,2013,89(2):251-257.
[23]Fan Y,Chen H,Qiao B,et al. c-Jun NH2-terminal kinase decreases ubiquitination and promoters stabilization of p21WAF1/CIP1 in K562cells[J]. Biochem Biophys Res Commun,2007,355:263-268.

备注/Memo

备注/Memo:
收稿日期:2014-12-25.
基金项目:江苏省科技厅前瞻性研究项目(BY2013001-03).
通讯联系人:殷志敏,教授,博导,研究方向:生物化学及细胞生物学.E-mail:yinzhimin@njnu.edu.cn
更新日期/Last Update: 2015-06-30