[1]高 蓉,陶 进,张 宁.圣维南原理与双层平板复合材料的层间弹性耦合[J].南京师范大学学报(自然科学版),2016,39(01):57.
 Gao Rong,Tao Jin,Zhang Ning.Saint-Venant’s Principle and Interlayer Elastic Coupling inBilayer Composites of Ferroelectric/Elastic Medium[J].Journal of Nanjing Normal University(Natural Science Edition),2016,39(01):57.
点击复制

圣维南原理与双层平板复合材料的层间弹性耦合()
分享到:

《南京师范大学学报》(自然科学版)[ISSN:1001-4616/CN:32-1239/N]

卷:
第39卷
期数:
2016年01期
页码:
57
栏目:
物理学
出版日期:
2016-03-31

文章信息/Info

Title:
Saint-Venant’s Principle and Interlayer Elastic Coupling inBilayer Composites of Ferroelectric/Elastic Medium
作者:
高 蓉陶 进张 宁
南京师范大学磁电子学实验室,江苏 南京 210023
Author(s):
Gao RongTao JinZhang Ning
Magnetoelectronic Lab,Nanjing Normal University,Nanjing 210023,China
关键词:
圣维南原理多层复合材料(膜)弹性介质电光效应
Keywords:
Saint-Venant’s principlemultilayer compositeelastic mediumeledtro-optical effect
分类号:
O343.2
文献标志码:
A
摘要:
研究了铁磁(电)/弹性介质双层复合材料中的层间弹性耦合,分析了圣维南原理(或局部作用原理)对理想弹性耦合条件下弹性介质内应力分布的影响.从弹性力学基本方程出发得到了切应力和张应力在弹性体内分布的解析模型.建议了一种用于研究局部作用原理的实验方法,该实验方法以应力双折射效应为基础,结合磁(电)致伸缩,构成乘积效应材料,并辅以应力计检测.分析发现,实验与理论结果基本一致.
Abstract:
The interlayer elastic coupling in bilayer composite of ferromagnetic and elastic medium was studied. The effect of Saint-Venant’s principle on the stress distribution in the elastic material under the condition of interfacial elastic coupling was derived based on the basic equations of elasticity. An experimental method has been suggested for investing the local-action effect. The method is based on stress-birefringence effects,combined with magnetostriction(or electostriction)effects to compose the materials of product effects,and assisted by standard stress meter detection. Analysis showed that the theoretical calculations in general accord with the experimental results.

参考文献/References:

[1] BAIBICH M N,BROTO J M,FERT A,et al. Giant Magnetoresistance of(001)Fe/(001)Cr magnetic superlattices[J]. Phys Rev Lett,1988,61:2 472-2 475.

[2] BINASCH G,GRüNBERG P,SAURENBACH F,et al. Enhanced magnetoresistance in layered magnetic structures with antiferromagnetic interlayer exchange[J]. Phys Rev,1989,B39:4 828-4 835.
[3] KREBS J J,LUBITZ P,CHAIKEN A,et al. Magnetic resonance determination of the antiferromagnetic coupling of Fe layers through Cr[J]. Phys Rev Lett,1989,63:1 645-1 648.
[4] SRINIVASAN G,RASMUSSEN E T. Calcium manganite prepared by tape casting[J]. Appl Phys Lett,2002,80:464-467.
[5] KIYOTAKE M,MANFRED W. Coupling in Terfenol-D?polyvinylidenedifluoride composites[J]. Appl Phys Lett,2002,81:100-102.
[6] DONG S X,ZHAI J Y,LI J F,et al. Field response of magnetoelectric laminate composites[J]. Appl Phys Lett,2006,88:082907-1-3.
[7] LI X Y,ZHANG N,LUO X B,et al. Electric field-induced stress-birefringence in layered composites PbZr1-xTixO3/Polycarbonate[J]. Chin Phys,2011,B20:037802-1-4.
[8] BICHURIN M I,KORNEV I A,PETROV V M,et al. Theory of magnetoelectric effects at microwave frequencies in a Piezoelectric/magnetostrictive multilayer composite[J]. Srinivasan Phys Rev,2001,B64:094409-1-6.
[9] HARSHE G,DOUGHERTY J O,NEWNHAM R E. Theoretical modelling of multilayer magnetoelectric composites[J]. Int J Appl Electromagn Mater,1993,4:145-148.
[10] AVELLANEDA M,HARSHE G. Magnetoelectric Effect in piezoelectric/magnetostrictive multilayer(2-2)composites[J]. Intell J Mater Syst Struct,1994,5:501-506.
[11] BICHURIN M I,PETROV V M,SRINIVASAN G. Theory of low-frequency magnetoelectric coupling in magnetostrictive-piezoelectric bilayers[J]. Phys Rev,2003,B68:054402-1-6.
[12] BICHURIN M I,PETROV V M,SRINIVASAN G. Theory of low-frequency magnetoelectric effects in ferromagnetic-ferroelectric layered composites[J]. J Appl Phys,2002,92:7 681-7 686.
[13] SRINIVASAN G,RASMUSSEN E T,HAYES R. Magnetoelectric effects in ferrite-lead zirconate titanate layered composites:the influence of zinc substitution in ferrites[J]. Phys Rev,2003,B67:014418-1-5.
[14] SAINT-VENANT B. De mémoire sur la torsion des prismes,mémoire des savants etrangers[J]. Académie de Sciences,Paris France,Ⅹ,Ⅳ,1855:233-560.[15] BOUSSINESQ J. Application des potentials[M]. Paris:Gauthier-Viliars Paris,1885:298-332.
[16] 赵建中. Toupin-Бердичевский定理不能作为圣维南原理的数学表达[J]. 应用数学和力学,1986,7(10):913-917.
[17] 孔超群. 圣维南原理研究工作综述[J]. 力学季刊,1990,11(3):35-44.
[18] TOUPIN R A. Saint-Venant’s Principle[J]. Arch Rat Mech Anal,1965,18:83-96.
[19] JAMES K K. On Saint-Venant’s principle in the two-dimensional linear theory of elasticity[J]. Arch Rat Mech Anal,1966,21:1-22.
[20] PAPPALETTRE C,GALIETTI U. Polycarbonate for frozen stress photoelasticity[J]. Strain,2008,31(2):69-74.

备注/Memo

备注/Memo:
收稿日期:2015-01-16. 
基金项目:国家自然科学基金(面上)项目(51277098). 
通讯联系人:张宁,教授,研究方向:凝聚态物理. E-mail:zhangning@njnu.edu.cn
doi:10.3969/j.issn.1001-4616.2016.01.010
更新日期/Last Update: 2016-03-30