[1]刘 标.抗虫转Bt基因植物的环境安全研究进展[J].南京师范大学学报(自然科学版),2016,39(03):1.[doi:10.3969/j.issn.1001-4616.2016.03.001特约稿]
 Liu Biao.Research Progresses on the Environmental Safety ofTransgenic Bt Plants with Insect-resistant Trait[J].Journal of Nanjing Normal University(Natural Science Edition),2016,39(03):1.[doi:10.3969/j.issn.1001-4616.2016.03.001特约稿]
点击复制

抗虫转Bt基因植物的环境安全研究进展()
分享到:

《南京师范大学学报》(自然科学版)[ISSN:1001-4616/CN:32-1239/N]

卷:
第39卷
期数:
2016年03期
页码:
1
栏目:
·特约稿·
出版日期:
2016-09-30

文章信息/Info

Title:
Research Progresses on the Environmental Safety ofTransgenic Bt Plants with Insect-resistant Trait
文章编号:
1001-4616(2016)03-0001-09
作者:
刘 标
环境保护部南京环境科学研究所,江苏 南京 210042
Author(s):
Liu Biao
Nanjing Institute of Environmental Sciences,Ministry of Environmental Protection,Nanjing 210042,China
关键词:
抗虫转Bt基因植物环境安全进展
Keywords:
insect-resistanttransgenic Bt plantsenvironmental safetyprogresses
分类号:
Q945
DOI:
10.3969/j.issn.1001-4616.2016.03.001特约稿
文献标志码:
A
摘要:
抗虫性状转Bt基因植物是目前世界上商业化种植规模仅次于耐除草剂性状的第二大类转基因植物.本文从对非靶标生物的影响、基因漂移、靶标生物的抗性和杂草化演化4个方面简介了抗虫转Bt基因植物环境安全研究的主要进展,并就今后应该继续研究的问题提出了建议.
Abstract:
At present,the commercial planting scale of transgenic Bt plants with insect-resistant trait is the second biggest in the world,being next only to that with herbicide-resistant trait. The research progresses on the environmental safety of transgenic Bt plants are summarized briefly from four aspects,i.e. the effects on non-target organisms,gene flow,resistance development of the target organisms and potential weediness. Suggestions for the future research issues on the environmental safety of transgenic Bt plants are put forwards.

参考文献/References:

[1] JAMES C. 20th anniversary(1996 to 2015)of the global commercialization of biotech crops and biotech crop highlights in 2015[R]. Ithaca,NY:ISAAA,2015.
[2] 范存会,黄季焜,胡瑞法,等. Bt抗虫棉的种植对农药施用的影响[J]. 中国农村观察,2002,5:2-10.
[3] SNOW A A,PALMA P M. Commercialization of transgenic plants:potential ecological risks[J]. BioScience,1997,47(2):86-96.
[4] WOLFENBARGER L L,PHIFER P R. The ecological risks and benefits of genetically engineered plants[J]. Science,2000,290:2 088-2 093.
[5] LI W D,WU K M,WANG X Q,et al. Impact of POLLEN GRains from Bt transgenic corn on the growth and development of Chinese tussah silkworm,Antheraea pernyi(Lepidoptera:Saturniidae)[J]. Environmental entomology,2005,34(4):922-928.
[6] DAI P L,JIA H R,GENG L L,et al. Bt toxin Cry1Ie causes no negative effects on survival,pollen consumption,or olfactory learning in worker honey bees(Hymenoptera:Apidae)[J]. Journal of economic entomology,2016,in press.
[7] STEIJVEN K,STEFFAN-DEWENTER I,Stephan H. Testing dose-dependent effects of stacked Bt maize pollen on in vitro-reared honey bee larvae[J]. Apidologie,2016,47:216-226.
[8] LIU B,XU C R,YAN F M,et al. The impacts of the pollen of insect-resistant transgenic cotton on honeybees[J]. Biodiversity and conservation,2005,14:3 487-3 496.
[9] LIU B,SHU C,XUE K,et al. The oral toxicity of the transgenic Bt+CpTI cotton pollen to honey bees(Apis mellifera)[J]. Ecotoxicology and environmental safety,2009,72(4):1 163-1 169.
[10] 李进步,方丽平,张亚楠,等. 不同类型品种棉花上棉蚜适生性及种群动态[J]. 昆虫学报,2007,50(10):1 027-1 033.
[11] 赵秋剑,吴 敌,林凤敏,等. 绿盲蝽在不同棉花品种(系)上取食行为的EPG解析及田间验证[J]. 中国农业科学,2011,44(11):2 260-2 268.
[12] LI X G,LIU B,WANG X X,et al. Field trials to evaluate effects of continuously planted transgenic insect-resistant cottons on soil invertebrates[J]. Journal of environmental monitoring,2012,14:1 055-1 063.
[13] LIU B,WANG L,ZENG Q,et al. Assessing effects of transgenic Cry1Ac cotton on the earthworm Eisenia fetida[J]. Soil biology & biochemistry,2009,41:1 841-1 846.
[14] 陈松,黄骏麒,周宝良,等. 转Bt基因抗虫棉棉子安全性评价-鲤鱼慢性毒性试验[J]. 棉花学报,1996,8(5):241-245.
[15] BOHN T,ROVER C M,SEMENCHUK P R. Daphnia magna negatively affected by chronic exposure to purified Cry-toxins[J]. Food and chemical toxicology,2016,91:130-140.
[16] 陈松,黄骏麒,周宝良,等. 转Bt基因抗虫棉棉籽安全性评价-大鼠、鹌鹑毒性试验[J]. 江苏农业学报,1996,12(2):17-22.
[17] LOSEY J E,RAYOR L S,CARTER M E. Transgenic pollen harms monarch larvae[J]. Nature,1999,399:214.
[18] PLEASANTS J M,HELLMICH R L,DIVELY G P,et al. Corn pollen deposition on milkweeds in and near cornfields[J]. Proceedings of the national academy of sciences of the United States of America,2001,98(21):11 919-11 924.
[19] SEARS M K,HELLMICH R L,STANLEY-HORN D E,et al. Impact of Bt corn pollen on monarch butterfly populations:a risk assessment[J]. Proceedings of the national academy of sciences of the United States of America,2001,98(21):11 937-11 942.
[20] BAHAR M H,STANLEY J N,GREGG P C,et al. Comparing the predatory performance of green lacewing on cotton bollworm on conventional and Bt cotton[J]. Journal of applied entomology,2012,136(4):263-270.
[21] HAN Y,CHEN J,WANG H,et al. Prey-mediated effects of transgenic cry2Aa rice on the spider Hylyphantes graminicola,a generalist predator of Nilapavarta lugens[J]. BioControl,2015,60:251-261.
[22] ZHANG G F,WAN F H,LIU W X,et al.Early instar response to plant-delivered Bt-toxin in a herbivore(Spodoptera litura)and a predator(Propylaea japonica)[J]. Crop protection,2006,25:527-533.
[23] GENG J H,SHEN Z R,SONG K,et al. Effect of pollen of regular cotton and transgenic Bt+CpTI cotton on the survival and reproduction of the parasitoid wasp Trichogramma chilonis(Hymenoptera:Trichogrammatidae)in the laboratory[J]. Environmental entomology,2006,35(6):1 661-1 668.
[24] LIU X X,ZHANG Q W,ZHAO J Z,et al. Effects of Bt transgenic cotton lines on the cotton bollworm parasitoid Microplitis mediator in the laboratory[J]. Biological control,2005,35:134-141.
[25] WANG Z X,LI Y H,HE K L,et al. Does Bt maize expressing Cry1Ac protein have adverse effects on the parasitoid Macrocentrus cingulum(Hymenoptera:Braconidae)[J]. Insect science,2016,in press.
[26] LU Y H,WU K M,JIANG Y Y,et al. Mirid bug outbreaks in multiple crops correlated with wide-scale adoption of Bt cotton in China[J]. Science,2010,328:1 151-1 154.
[27] LU Y H,WU K M,JIANG Y Y,et al. Widespread adoption of Bt cotton and insecticide decrease promotes biocontrol services[J]. Nature,2012,487(7 407):362-365.
[28] WU K,LU Y H,FENG H,et al. Suppression of cotton bollworm in multiple crops in China in areas with Bt toxin-containing cotton[J]. Science,2008,321(5 896):1 676-1 678.
[29] HUTCHISON W D,BURKNESS E C,MITCHELL P D,et al. Areawide suppression of european corn borer with Bt maize reaps savings to non-Bt maize growers[J]. Science,2010,330:222-225.
[30] SLATKIN M. Gene flow in natural populations[J]. Annual review of ecology and systematic,1985,16:393-430.
[31] LU B R,WANG L,WANG Z. Can transgene flow lead to environmental biosafety impacts in rice[J]. Sci Sin Vitae,2016,46:420-431.
[32] QUIST D,CHAPELA I H. Transgenic DNA introgressed into traditional maize landraces in Oaxaca,Mexico[J]. Nature,2001,414(6 863):541-543.
[33] PI?EYRO-NELSON A,VAN HEERWAARDEN J,PERALES H R,et al. Transgenes in Mexican maize:molecular evidence and methodological considerations for GMO detection in landrace populations[J]. Molecular ecology,2009,18(4):750-761.
[34] RONG J,LU B R,SONG Z P,et al. Dramatic reduction of crop-to-crop gene flow within a short distance from transgenic rice fields[J]. New phytologist,2007,173:346-353.
[35] RONG J,SONG Z P,SU J,et al. Low frequency of transgene flow from Bt/CpTI rice to its nontransgenic counterparts planted at close spacing[J]. New phytologist,2005,168:559-566.
[36] XIA H,LU B R,SU J,et al. Normal expression of insect-resistant transgene in progeny of common wild rice crossed with genetically modified rice:its implication in ecological biosafety assessment[J]. Theoretical and applied genetics,2009,119:635-644.
[37] XIA H,ZHANG H B,WANG W,et al. Ambient insect pressure and recipient genotypes determine fecundity of transgenic crop-weed rice hybrid progeny:implications for environmental biosafety assessment[J]. Evolutionary applications,2016,in press.
[38] 张宏彬,夏辉,杨箫,等. 种植密度对抗虫转基因杂草稻分离后代适合度的影响[J]. 复旦学报(自然科学版),2013,52:419-427.
[39] 贾婕,张金凤,王斌,等. 植物防范转基因逃逸的分子策略[J]. 农业资源与环境科学,2008,24(4):390-393.
[40] GRESSEL J. Dealing with transgene flow of crop protection traits from crops to their relatives[J]. Pest management science,2015,71(5):658-667.
[41] 张永军,吴孔明,彭于发,等. 转抗虫基因植物生态安全性研究进展[J]. 昆虫知识,2002,5:321-327.
[42] TABASHNIK B E,CARRIERE Y,DENNEHY T J,et al. Insect resistance to transgenic Bt crops:lessons from the laboratory and field[J]. Journal of economic entomology,2003,96(4):1 031-1 038.
[43] TABASHNIK B E,PATIN A L,DENNEHY T J,et al. Frequency of resistance to Bacillus thuringiensis in field populations of pink bollworm[J]. Proceedings of the national academy of science of the United States of America,2000,97(24):12 980-12 984.
[44] 赵建周,赵奎军,卢美光,等. 华北地区棉铃虫与转Bt杀虫蛋白基因棉花间的互作研究[J]. 中国农业科学,1998, 3(15):1-6.
[45] HUANG F,BUSCHMAN L L,HIGGINS R A,et al. Inheritance of resistance to Bacillus thuringiensis toxin(Dipel ES)in the European corn borer[J]. Science,1999,284:965-967.
[46] GOULD F,ANDERSON A,REYNOLDS A,et al. Selection and genetic analysis of a Heliothis virescens(Lepidoptera:Noctuidae)strain with high levels of resistance to Bacillus thuringiensis toxins[J]. Journal of economic entomology,1995,88:1 545-1 559.
[47] LIANG G M,WU K M,YU H K,et al. Changes of inheritance mode and fitness in Helicoverpa armigera(Hübner)(Lepidoptera:Noctuidae)along with its resistance evolution to Cry1Ac toxin[J]. Journal of invertebrate pathology,2008,97(2):142-149.
[48] RAHARDJA U,WHALON M E. Inheritance of resistance to Bacillus thuringiensis subsp tenebrionis CryⅢA delta-endotoxin in Colorado potato beetle(Coleoptera:Chrysomelidae)[J]. Journal of economic entomology,1995,88:21-26.
[49] CARRIéRE Y,ELLERS-KIRK C,LIU Y B,et al. Fitness costs and maternal effects associated with resistance to transgenic cotton in the pink bollworm(Lepidoptera:Gelechiidae)[J]. Journal of economic entomology,2001,94:1 571-1 576.
[50] ZHANG W N,MA L,ZHONG F,et al. Fitness costs of reproductive capacity and ovarian development in a Bt-resistant strain of the cotton bollworm Helicoverpa armigera(Hübner)(Lepidoptera:Noctuidae)[J]. Pest management science,2015,71:870-877.
[51] HACKETT S C,BONSALL M B. Type of fitness cost influences the rate of evolution of resistance to transgenic Bt crops[J]. Journal of applied ecology,2016,in press.
[52] WAN P,HUANG Y X,WU H H,et al. Increased frequency of pink bollworm resistance to Bt toxin Cry1Ac[J]. PLoS ONE,2012,7:e29975.
[53] ZHANG H N,YIN W,ZHAO J,et al. Early warning of cotton bollworm resistance associated with intensive planting of Bt cotton in China[J]. PLoS ONE,2011,6:e22874.
[54] DHURUA S,GUJAR G T,Field-evolved resistance to Bt toxin Cry1Ac in the pink bollworm,Pectinophora gossypiella(Saunders)(Lepidoptera:Gelechiidae),from India[J]. Pest management science,2011,67:898-903.
[55] FABRICK J A,PONNURAJ J,SINGH A,et al. Alternative splicing and highly variable cadherin transcripts associated with field-evolved resistance of pink bollworm to Bt cotton in India[J]. PLoS One,2014,9(5):e97900.
[56] STORER N P,KUBISZAK M E,KING J E,et al. Status of resistance to Bt maize in Spodoptera frugiperda:lessons from Puerto Rico[J]. Journal of invertebrate pathology,2012,110:294-300.
[57] Gassmann A J,Petzold-Maxwell J L,Keweshan R S,et al. Field-evolved resistance to Bt maize by western corn rootworm[J]. PLoS ONE,2011,6:e22629.
[58] GASSMANN A J. Field-evolved resistance to Bt maize by western corn rootworm:predictions from the laboratory and effects in the field[J]. Journal of invertebrate pathology,2012,110:287-293.
[59] VAN RENSBURG J B J. First report of field resistance by stem borer,Busseola fusca(Fuller)to Bt-transgenic maize[J]. South african journal of plant and soil,2007,24:147-151.
[60] VAN DEN BERG J,HILBECK A,B?HN T. Pest resistance to Cry1Ab Bt maize:field resistance,contributing factors and lessons from South Africa[J]. Crop protection,2013,54:154-160.
[61] FARIAS J R,ANDOW D A,HORIKOSHI R J,et al. Field-evolved resistance to Cry1F maize by Spodoptera frugiperda(Lepidoptera:Noctuidae)in Brazil[J]. Crop protection,2014,64:150-158.
[62] SANTOS-AMAYA O F,CLEBSON S T,HUGO M M,et al. Genetic basis of Cry1F resistance in two Brazilian populations of fall armyworm,Spodoptera frugiperda[J]. Crop protection,2016,81:154-162.
[63] TABASHNIK B E,BRéVAULT T,CARRIèRE Y. Insect resistance to Bt crops:lessons from the first billion acres[J]. Nature biotechnology,2013,31(6):510-521.
[64] HERRERO S,YOLANDA B,PATRICIA H M,et al. Susceptibility,mechanisms of response and resistance to Bacillus thuringiensis toxins in Spodoptera spp[J]. Current opinion in insect science,2016,15:89-96.
[65] HAN L Z,JIANG X F,PENG Y F. Potential resistance management for the sustainable use of insect-resistant genetically modified corn and rice in China[J]. Current opinion in insect science,2016,in press.
[66] GOULD F. Sustainability of transgenic insecticidal cultivars:integrating pest genetics and ecology[J]. Annual review of entomology,1998,43(1):701-726.
[67] CASTANERA P,FARINóS GP,ORTEGO F,et al. Sixteen years of Bt maize in the EU hotspot:why has resistance not evolved?[J]. PLoS ONE,2016,11(5):e0154200.
[68] GOULD F. Testing Bt refuge strategies in the field[J]. Nature biotechnology,2000,18(3):266-267.
[69] GAO Y,WU K,GOULD F. Frequency of Bt resistance alleles in H. annigera during 2006-2008 in Northern China[J]. Environmental entomology,2009,38(4):1 336-1 3 42.
[70] WU K,GUO Y. The evolution of cotton pest management practices in China[J]. Annual review of entomology,2005,50:31-52.
[71] WU K. Monitoring and management strategy for Helicoverpa armigera resistance to Bt cotton in China[J]. Journal of invertebrate pathology,2007,95(3):220-223.
[72] WU K,GUO Y,GAO S. Evaluation of the natural refuge function for Helicoverpa armigera(Lepidoptera:Noctuidae)within Bacillus thuringiensis transgenic cotton growing areas in north China[J]. Journal of economic entomology,2002,95(4):832-837.
[73] Zhao J Z,Cao J,Li Y,et al. Transgenic plants expressing two Bacillus thuringiensis toxins delay insect resistance evolution[J]. Nature biotechnology,2003,21(12):1 493-1 497.
[74] CARRIèRE Y,FABRICK J A,TABASHNIK B E. Can pyramids and seed mixtures delay resistance to Bt crops?[J]. Trends in biotechnology,2016,34(4):291-302.
[75] 刘晨曦,李云河,高玉林,等. 棉铃虫对转Bt基因抗虫棉花的抗性机制及治理[J]. 中国科学(生命科学),2010,40(10):920-928.
[76] CHEN L Y,SNOW A A,WANG F,et al. Effects of insect-resistance transgenes on fecundity in rice(Oryza sativa,Poaceae):a test for underlying costs[J]. American journal of botany,2006,93(1):94-101.
[77] LIU Y,GE F,LIANG Y,et al. Characterization of competitive interactions in the coexistence of Bt-transgenic and conventional rice[J]. BMC biotechnology,2015,15(27):1-12.
[78] WANG Y,ZHANG G,DU J,et al. Influence of transgenic hybrid rice expressing a fused gene derived from cry1Ab and cry1Ac on primary insect pests and rice yield[J]. Crop protection,2010,29(2):128-133.
[79] KIM S,KIM C,LI W,et al. Inheritance and field performance of transgenic Korean Bt rice lines resistant to rice yellow stem borer[J]. Euphytica,2008,164(3):829-839.
[80] XIA H,CHEN L,WANG F,et al. Yield benefit and underlying cost of insect-resistance transgenic rice:implication in breeding and deploying transgenic crops[J]. Field crops research,2010,118(3):215-220.
[81] Yang X,Wang F,Su J,et al. Limited fitness advantages of crop-weed hybrid progeny containing insect-resistant transgenes(Bt/CpTI)in transgenic rice field[J]. PLoS One,2012,7:e41220.
[82] 刘标,韩娟,薛堃. 转基因植物环境监测进展[J]. 生态学报,2016,9:2 490-2 496.
[83] XU L N,WANG Z Y,ZHANG J,et al. Cross-resistance of Cry1Ab-selected Asian corn borer to other Cry toxins[J]. Journal of applied entomoloy,2010,134(5):429-438.
[84] GREENE S L,KESOJU S R,MARTIN R C,et al. Occurrence of transgenic feral alfalfa(Medicago sativa subsp. sativa L.)in alfalfa seed production areas in the United States[J]. PLoS One,2015,10(12):e0143296.

备注/Memo

备注/Memo:
收稿日期:2016-05-10. 
基金项目:国家自然科学基金(31370544)、国家转基因新品种培育重大专项之重大课题(2016ZX08012-005). 
通讯联系人:刘标,研究员,博士生导师,研究方向:转基因生物安全和生物多样性保护. E-mail:liubiao@nies.org
更新日期/Last Update: 2016-09-30