[1]陈 平.以严格凸范数为费用函数时的Kantorovich问题解的分类[J].南京师范大学学报(自然科学版),2016,39(03):22.[doi:10.3969/j.issn.1001-4616.2016.03.004]
Chen Ping.Classification of Solutions of Kantorovich Problems with Strictly Convex Norms[J].Journal of Nanjing Normal University(Natural Science Edition),2016,39(03):22.[doi:10.3969/j.issn.1001-4616.2016.03.004]
点击复制
以严格凸范数为费用函数时的Kantorovich问题解的分类()
《南京师范大学学报》(自然科学版)[ISSN:1001-4616/CN:32-1239/N]
- 卷:
-
第39卷
- 期数:
-
2016年03期
- 页码:
-
22
- 栏目:
-
·特约稿·
- 出版日期:
-
2016-09-30
文章信息/Info
- Title:
-
Classification of Solutions of Kantorovich Problems with Strictly Convex Norms
- 文章编号:
-
1001-4616(2016)03-0022-04
- 作者:
-
陈 平
-
江苏第二师范学院数学与信息技术学院,江苏 南京 210013
- Author(s):
-
Chen Ping
-
School of Mathematics and Information Technology,Jiangsu Second Normal University,Nanjing 210013,China
-
- 关键词:
-
严格凸范数; 最优计划; Kantorovich问题
- Keywords:
-
strictly convex norm; optimal transport plans; classification; Kantorovich problem
- 分类号:
-
O174.12
- DOI:
-
10.3969/j.issn.1001-4616.2016.03.004
- 文献标志码:
-
A
- 摘要:
-
回答了费用函数为严格凸范数时的Kantorovich问题解的分类问题. 首先,利用范数的严格凸性,我们得到了最优计划在传输线上的性质定理. 其次,我们应用变分法的直接方法证明了第二变分问题解的存在性,该问题的解集是全体最优计划构成的集合的子集合. 最后,本文利用第二变分问题中被积函数的凹凸性,对最优计划进行选择,达到分类的目的,证明了可以根据传输线上的单调性这一分类准则对最优计划进行分类.
- Abstract:
-
The paper proposes a classification of solutions of Kantorovich problems with strictly convex norms. We prove a basic property theorem of any optimal plan on transport rays based on strict convexity of the norm. Then we show existence of solutions of the secondary variational problem,whose admissible set is a subset of the collection of all optimal transport plans for a given strictly convex norm. At last,we select different optimal transport plans by solving the secondary variational problem with different integrand functions which are either strictly convex or strictly concave. Furthermore,we prove that those selected optimal transport plans are either ray increasing or ray decreasing,that is we classify optimal transport plans according to ray monotonicity.
参考文献/References:
[1] AMBROSIO L,PRATELLI A. Existence and stability results in the L1 theory of optimal transportation[M]//Optimal transportation and applications. Berlin Heidelberg:Springer,2003:123-160.
[2] 陈平. 次黎曼流形上的极值分解[J]. 安徽师范大学学报(自然科学版),2015,38(6):533-536.
[3] VILLANI C. Optimal transportation,old and new[M]. Berlin Heidelberg:Springer,2008.
[4] SANTAMBROGIO F. Optimal transport for applied mathematicians[M]. Birkauser,NY:Springer,2015.
[5] 陈平. 几个最优映射存在唯一性定理的统一证明[J]. 南京师大学报(自然科学版),2015,38(4):82-85.
[6] CHEN P,JIANG F D,YANG X P. Two dimensional optimal transportation problem for a distance cost with a convex constraint[J]. ESAIM:Control,Optimisation and Calculus of Variations,2013,19(4):1 064-1 075.
[7] CHEN P,JIANG F D,Yang X P. Optimal transportation in Rn for a distance cost with a convex constraint[J]. Zeitschrift füer angewandte mathematik und physik,2015,66(3):587-606.
[8] SANTAMBROGIO F. Absolute continuity and summability of optimal transfort densities:simpler proofs and new estimates[J]. Calculus of variations and partial differential equations,2009,36(3):343-354.
[9] 张恭庆,郭懋正. 泛函分析讲义(上册)[M]. 北京:北京大学出版社,1990.
[10] FELDMAN M,MCCANN R J. Uniqueness and transport density in Monge’s mass transportation problem[J]. Calculus of variations,2002,15:81-113.
[11] CHAMPION T,DE PASCALE L. The monge problem in Rd[J]. Duke mathematical journal,2011,157(3):551-572.
备注/Memo
- 备注/Memo:
-
收稿日期:2015-12-11.
基金项目:国家自然科学基金天元基金项目(11526099)、江苏省高校自然科学基金(15KJB110003)、江苏第二师范学院博士专项基金(JSNU2015BZ05).
通讯联系人:陈平,博士,讲师,研究方向:偏微分方程与几何分析. E-mail:chenping200507@126.com
更新日期/Last Update:
2016-09-30