[1]杨双波.非对称耦合双量子阱中的激子态及结合能[J].南京师范大学学报(自然科学版),2016,39(03):46.[doi:10.3969/j.issn.1001-4616.2016.03.008]
 Yang Shuangbo.Exciton State and Its Binding Energy for a CoupledAsymmetric Double Quantum Well System[J].Journal of Nanjing Normal University(Natural Science Edition),2016,39(03):46.[doi:10.3969/j.issn.1001-4616.2016.03.008]
点击复制

非对称耦合双量子阱中的激子态及结合能()
分享到:

《南京师范大学学报》(自然科学版)[ISSN:1001-4616/CN:32-1239/N]

卷:
第39卷
期数:
2016年03期
页码:
46
栏目:
·物理学·
出版日期:
2016-09-30

文章信息/Info

Title:
Exciton State and Its Binding Energy for a CoupledAsymmetric Double Quantum Well System
文章编号:
1001-4616(2016)03-0046-08
作者:
杨双波
南京师范大学物理科学与技术学院,江苏省大规摸复杂系统数值模拟省重点实验室,江苏 南京 210023
Author(s):
Yang Shuangbo
Jiangsu Key Laboratory for NSLSCS,School of Physics and Technology,Nanjing Normal University,Nanjing 210023,China
关键词:
量子阱激子结合能有效质量近似重/轻空穴
Keywords:
quantum wellbinding energy of excitoneffective mass approximationheavy/light hole
分类号:
O413.1
DOI:
10.3969/j.issn.1001-4616.2016.03.008
文献标志码:
A
摘要:
本文在有效质量近似下,利用变分法计算了AlxGa1-xAs/GaAs/AlxGa1-xAs/GaAs/AlxGa1-xAs非对称耦合双量子阱系统中重/轻空穴激子态的结合能,研究了重/轻空穴激子态的结合能随右阱宽的变化关系;计算了在重/轻空穴激子态下电子与重/轻空穴沿z方向的平均距离及在垂直于z轴的平面内的平均距离,研究了它们随右阱宽的变化关系;计算了给定激子态下电子与重/轻空穴在空间各区域的分布几率,研究了空间各区域分布几率随右阱宽变化的关系. 计算中考虑了电子与重/轻空穴在势阱与势垒中具有不同的有效质量,计算结果合理,令人信服.
Abstract:
Within effective mass approximation,and by variational method we calculated the binding energies for the heavy hole exciton and light hole exciton for a coupled asymmetric double quantum well system,we studied how the binding energies change with the increase of the width of the right potential well;at a given exciton state,we calculated the expectation value of the distance in z direction and the distance in the plane perpendicular to z axis between electron and the hole(H/L);we studied the behavior of the change of the distances as we increase the width of the right potential well;at a given exciton state,we calculated the probability distribution in space region for the electron and hole(H/L)pair appeared,we studied how the probability changes with increasing the width of the right potential well. The results are reasonable and very convincing.

参考文献/References:

[1] MILLER R C,KLEINMAN D A,TSANG W T,et al. Observation of the excited level of excitons in GaAs quantum wells[J]. Phys Rev B,1981,24:1 134-1 136.
[2] BASTARD G,MENDEZ E E,CHANG L L,et al. Exciton binding energy in quantum wells[J]. Phys Rev B,1 982,26:1 974-1 979.
[3] GREENE R L,BAJAJ K K,PHELPS D E. Energy levels of wannier excitons in GaAs-AlxGa1-xAs quantum well structures[J]. Phys Rev B,1984,29:1 807-1 812.
[4] LAHELD U E H,PEDERSEN F B,HEMMER P C. Excitons in type-II quantum dots:finite offset[J]. Phys Rev B,1995,52:2 697-2 703.
[5] JADCZAK J,KUBISA M,RYCZKO K,et al. High magnetic field spin splitting of excitons in asymmetric GaAs quantum wells[J]. Phys Rev B,2012,86:245401-1-6.
[6] FOX A M,MILLER D A B,LIVESCU G,et al. Excitonic effects in coupled quantum wells[J]. Phys Rev B,1991,44:6 231-6 242.
[7] CRUZ H. Dynamics of indirect excitons in a coupled quantum well pair[J]. J Appl Phys,2013,113:153706-1-6.
[8] BALDWIN T K,MCGILL S A,WANG H. Exciton-correlated hole tunneling in mexed type GaAs quantum wells[J]. Phys Rev B,2014,90:035304-1-6.
[9] CEN J,CHEN R,BAJAJ K K. Exciton binding energy in dielectric quantum well in magnetic field[J]. Phys Rev B,1994,50:10 947-10 952.
[10] ARULMOZHI M,ANITHA A. Excitons in a surface quantum well[J]. Superlattices and microstructures,2014,75:222-232.
[11] NICULESCU E C,CRISTEA M,SPANDONIDE A. Exciton state in CdSe/ZnS core-shell quantum dots under applied electric field[J]. Superlattices and microstructures,2013,63:1-9.
[12] RAMVALL P,RIBLET P,NOMURA S,et al. Optical properties of GaN quantum dots[J]. J Appl Phys,2000,87:3 883-3 890.
[13] TAWARA T,TANAKA S,KUMANO H,et al. Growth and luminescence properties of self-organized quantum dots[J]. Appl Phys Lett,1999,75:235-237.
[14] TANG Z K,WONG C K L,YU P,et al. Room-temperature ultravoilet laser emission from self-assembled ZnO microcristalite film[J]. Appl Phys Lett,1998,72:3 270-3 272.
[15] YU G,LI G,JIA Y,TANG G. Exciton state in metallic zigzag single-walled carbon nanotubes under uniaxial strain[J]. Superlattices and microstructures,2014,75:1-8.
[16] DESLIPPE J,SPATARU C,PRENDERGAST D,et al. Bound excitons in metallic single-walled carbon nanotubes[J]. Nano Lett,2007,7:1 626-1 630.
[17] SPATARU C D,ISMALL-BEIGI S,BENEDICT L X,et al. Extonic effects and the optical spectra of single-walled carbon nanotubes[J]. Phys Rev Lett,2004,92:077402-077404
[18] MALIC E,MAULTZSCH J,REICH S,et al. Extonic Rayleigh scattering spectra of matalic single-walled carbon nanotubes[J]. Phys Rev B,2010,82:115439-1-7
[19] WEIMER J S,MILLER D A B,CHEMLA D S. Strong polarization-sensitive electroabsorption in GaAs/AlGaAs quantum well waveguide[J]. Appl Phys Lett,1985,47:1 148-1 150.
[20] BRUM J A,BASTARD G. Electric-field-induced dissociation of extons in semiconductor quantum wells[J]. Phys Rev B,1985,31:3 893-3 898.
[21] UEDA T,AN Z,KOMIYAMA S. Charge-sensitive infrared phototransistors[J]. J Appl Phys,2008,103:093109-1-7.
[22] Gilmore R. 2004 Elementary quantum mechanics in one dimension[M]. Baltimore & London:The Johns Hopkins University Press,2004:91.
[23] STERN F,SARMA S D. Electron energy levels in GaAs-AlxGa1-xAl heterojunctions[J]. Phys Rev B,1984,30:840-848.

备注/Memo

备注/Memo:
收稿日期:2015-10-19. 
通讯联系人:杨双波,博士,教授,研究方向:低维量子系统. E-mail:yangshuangbo@njnu.edu.cn
更新日期/Last Update: 2016-09-30