[1]何朝兵.缺失数据下Logistic回归多变点模型的贝叶斯估计[J].南京师范大学学报(自然科学版),2016,39(04):0.[doi:10.3969/j.issn.1001-4616.2016.04.004]
 He Chaobing.Bayesian Estimation of Logistic Regression Modelwith Multiple Change Points for Missing Data[J].Journal of Nanjing Normal University(Natural Science Edition),2016,39(04):0.[doi:10.3969/j.issn.1001-4616.2016.04.004]
点击复制

缺失数据下Logistic回归多变点模型的贝叶斯估计()
分享到:

《南京师范大学学报》(自然科学版)[ISSN:1001-4616/CN:32-1239/N]

卷:
第39卷
期数:
2016年04期
页码:
0
栏目:
·数学与计算机科学·
出版日期:
2016-12-30

文章信息/Info

Title:
Bayesian Estimation of Logistic Regression Modelwith Multiple Change Points for Missing Data
文章编号:
1001-4616(2016)04-0014-05
作者:
何朝兵
安阳师范学院数学与统计学院,河南 安阳 455000
Author(s):
He Chaobing
He Chaobing
关键词:
完全数据似然函数满条件分布筛选法Gibbs抽样Metropolis-Hastings算法
Keywords:
complete-data likelihood functionfull conditional
分类号:
O212.4; O212.8
DOI:
10.3969/j.issn.1001-4616.2016.04.004
文献标志码:
A
摘要:
利用随机的方法填充了缺失数据,获得了Logistic回归多变点模型的完全数据似然函数. 研究了变点位置等未知参数的满条件分布. 利用筛选法和Metropolis-Hastings算法对参数进行抽样,把Gibbs样本的均值作为参数的贝叶斯估计. 随机模拟的结果表明估计的精度较高.
Abstract:
The missing data is filled in by a random way. The complete-data likelihood function of logistic regression model with multiple change points is obtained. The full conditional distributions of change-point positions and other unknown parameters are studied. All the parameters are sampled by screening method and Metropolis-Hastings algorithm,and the means of Gibbs samples are taken as Bayesian estimations of the parameters. Random simulation results show that the estimations are fairly accurate.

参考文献/References:

[1] PAGE E S. Continuous inspection schemes[J]. Biometrika,1954,41(1):100-115.
[2]CHERNOFF H,ZACKS S. Estimating the current mean of a normal distribution which is subjected to changes in time[J]. The annals of mathematical statistics,1964,35(3):999-1 018.
[3]FEARNHEAD P. Exact and efficient Bayesian inference for multiple changepoint problems[J]. Statistics and computing,2006,16(2):203-213.
[4]YUAN T,KUO Y. Bayesian analysis of hazard rate,change point,and cost-optimal burn-in time for electronic devices[J]. IEEE transactions on reliability,2010,59(1):132-138.
[5]LIANG F M,WONG W H. Real-parameter evolutionary Monte Carlo with applications to Bayesian mixture models[J]. Journal of the American statistical association,2001,96(454):653-666.
[6]LAVIELLE M,LEBARBIER E. An application of MCMC methods for the multiple change-points problem[J]. Signal processing,2001,81(1):39-53.
[7]KIM J,CHEON S. Bayesian multiple change-point estimation with annealing stochastic approximation Monte Carlo[J]. Computational statistics,2010,25(2):215-239.
[8]POLSON N G,SCOTT J G,WINDLE J. Bayesian inference for logistic models using Pólya-Gamma latent variables[J]. Journal of the American statistical association,2013,108(504):1 339-1 349.
[9]HOSMER JR D W,LEMESHOW S,STURDIVANT R X. Applied logistic regression[M]. New York:John Wiley & Sons,2013.
[10]PEDUZZI P,CONCATO J,KEMPER E,et al. A simulation study of the number of events per variable in logistic regression analysis[J]. Journal of clinical epidemiology,1996,49(12):1 373-1 379.
[11]CHEN J,GUPTA A K. Parametric statistical change point analysis:with applications to genetics,medicine,and finance[M]. Berlin:Springer Science & Business Media,2011.
[12]GUREVICH G,VEXLER A. Change point problems in the model of logistic regression[J]. Journal of statistical planning and inference,2005,131(2):313-331.
[13]PASTOR B R,GUALLAR E,CORESH J. Transition models for change-point estimation in logistic regression[J]. Statistics in medicine,2003,22(7):1 141-1 162.
[14]MUGGEO V M R. Estimating regression models with unknown break-points[J]. Statistics in medicine,2003,22(19):3 055-3 071.

备注/Memo

备注/Memo:
收稿日期:2015-09-20.
基金项目:河南省高等学校重点科研项目(16A110001).
通讯联系人:何朝兵,硕士,讲师,研究方向:概率统计. E-mail:chaobing5@163.com
更新日期/Last Update: 2016-12-31