[1]盛华山.数值求解二维Sine-Gordon方程的C0P1时间递进方法[J].南京师范大学学报(自然科学版),2017,40(01):1.[doi:10.3969/j.issn.1001-4616.2017.01.001]
 Sheng Huashan.A C0P1 Time Stepping Method for Solving 2D Sine-Gordon Equations[J].Journal of Nanjing Normal University(Natural Science Edition),2017,40(01):1.[doi:10.3969/j.issn.1001-4616.2017.01.001]
点击复制

数值求解二维Sine-Gordon方程的C0P1时间递进方法()
分享到:

《南京师范大学学报》(自然科学版)[ISSN:1001-4616/CN:32-1239/N]

卷:
第40卷
期数:
2017年01期
页码:
1
栏目:
·数学与计算机科学·
出版日期:
2017-03-31

文章信息/Info

Title:
A C0P1 Time Stepping Method for Solving 2D Sine-Gordon Equations
文章编号:
1001-4616(2017)01-0001-05
作者:
盛华山
上海交通大学数学科学学院,上海 200240
Author(s):
Sheng Huashan
School of Mathematical Sciences,Shanghai Jiao Tong University,Shanghai 200240,China
关键词:
时间递进方法sine-Gordon方程线性化插值全离散格式
Keywords:
time stepping methodsine-Gordon equationslinear interpolationfull-discrete scheme
分类号:
O24
DOI:
10.3969/j.issn.1001-4616.2017.01.001
文献标志码:
A
摘要:
提出了基于局部线性化的连续分片线性(以下简称C0P1)时间递进方法[1]求解二维sine-Gordon方程的数值方法. 首先在时间方向采用连续分片线性有限元离散,通过对sine-Gordon方程中各项分别采用显式或隐式线性化插值,导出时间半离散格式. 再在空间方向利用有限元方法[2]离散得到全离散格式. 若干数值试验证明了该方法的有效性.
Abstract:
This paper proposes a continuous piecewise linear(called C0P1 for short)time stepping method[1] combined with local linearization for solving 2D sine-Gordon equations. First of all,the sine-Gordon equations are discretized in time direction by a linear continuous Galerkin method combined with the explicit or implicit local linearization,leading to a semi-discrete scheme. Furthermore,a full-discrete scheme is obtained by spatial discretization with the finite element method[2]. Several numerical experiments are given to perform the effectiveness of the method.

参考文献/References:

[1] LAI J,HUANG J. An adaptive linear time stepping algorithm for second-order linear evolution problems[J]. Int J Numer Anal Mod,2015(12):230-253.
[2]BRENNER S,SCOTT L R. The mathematical theory of finite element methods[M]. 3rd. New York:Springer,2008.
[3]BOUR E. Theorie de la deformation des surfaces[J]. J ecole imperiale polytechnique,1862,19:1-48.
[4]ZAGRODZINSKY J. Particular solutions of the sine-Gordon equation in 2+1 dimensions[J]. Phys Lett A,1979,72:284-286.
[5]WAZWAZ A M. Exact solutions for the generalized sine-Gordon and the generalized sinh-Gordon equations[J]. Chaos solitons fractals,2006,28:127-135.
[6]CHRISTIANSEN P,LOMDAHL P. Numerical study of 2+1 dimensional sine-Gordon solitons[J]. Physica D,1981(2):482-494.
[7]GUO B,PASCUAL P,RODRIGUEZ M,et al. Numerical solution of the sine-Gordon equation[J]. Appl Math Comput,1986,18:1-14.
[8]MIRZAEI D,DEHGHAN M. Meshless local Petrov-Galerkin(MLPG)approximation to the two dimensional sine-Gordon equation[J]. J Comput Appl Math,2010,233:2 737-2 754.
[9]Dehghan M,Abbaszadeh M,Mohebbi A. An implicit RBF meshless approach for solving the time fractional nonlinear sine-Gordon and Klein-Gordon equations[J]. Eng Anal Bound Elem,2015,50:412-434.

备注/Memo

备注/Memo:
收稿日期:2016-09-18.
基金项目:国家自然科学基金面上项目(11571237).
通讯联系人:盛华山,博士生,研究方向:科学计算. E-mail:shs3701001@sjtu.edu.cn
更新日期/Last Update: 1900-01-01