[1]徐春艳,宋余庆,刘 哲,等.基于Contourlet变换和T混合模型的医学图像融合算法[J].南京师范大学学报(自然科学版),2017,40(01):27.[doi:10.3969/j.issn.1001-4616.2017.01.005]
 Xu Chunyan,Song Yuqing,Liu Zhe,et al.A Medical Image Fusion Algorithm Based on Contourlet Transform and T Mixture Models[J].Journal of Nanjing Normal University(Natural Science Edition),2017,40(01):27.[doi:10.3969/j.issn.1001-4616.2017.01.005]
点击复制

基于Contourlet变换和T混合模型的医学图像融合算法()
分享到:

《南京师范大学学报》(自然科学版)[ISSN:1001-4616/CN:32-1239/N]

卷:
第40卷
期数:
2017年01期
页码:
27
栏目:
·数学与计算机科学·
出版日期:
2017-03-31

文章信息/Info

Title:
A Medical Image Fusion Algorithm Based on Contourlet Transform and T Mixture Models
文章编号:
1001-4616(2017)01-0027-06
作者:
徐春艳宋余庆刘 哲包 翔
江苏大学计算机科学与通信工程学院,江苏 镇江 212013
Author(s):
Xu ChunyanSong YuqingLiu ZheBao Xiang
School of Computer Science and Communication Engineering,Jiangsu University,Zhenjiang 212013,China
关键词:
T分布混合模型Contourlet变换图像融合GIHS
Keywords:
T distribution mixture modelsContourlet transformimage fusionGIHS
分类号:
TP391
DOI:
10.3969/j.issn.1001-4616.2017.01.005
文献标志码:
A
摘要:
医学图像融合已经成为医学图像处理领域的热门研究之一. 针对基于高斯混合模型的期望最大值融合算法容易导致局部细节丢失的问题,提出了一种基于Contourlet变换的T混合分布图像融合方法. 首先通过GIHS(Generalized Intensity-Hue-Saturation)变换将彩色医学图像从RGB颜色空间变换到GIHS 空间,进而通过轮廓波变换(Contourlet)获得高频和低频两个部分; 然后采用系数绝对值选大法和基于T分布混合模型期望最大法分别对高频部分和低频部分进行融合; 最后利用Contourlet反变换获得新强度,将其和PET图像的其他分量通过GIHS反变换得到融合结果. 该方法相比于其他的融合方法,具有信息量丰富、清晰度高等优点.
Abstract:
Medical image fusion has become a hot research in the field of medical image processing,among which the most classical method called Gaussian mixture models with Expectation Maximum(EM)fusion,the most classical method may lose the local detail. This paper presents a fusion algorithm which is based on Contourlet transform and T mixture models. Firstly,the RGB color space of source images are converted to the GIHS space through GIHS(Generalized Intensity-Hue-Saturation)transform. Secondly,with the Contourlet transform,the intensity component are decomposed into multi-resolution representations,and then the maximum absolute value of coefficient is applied to fuse the high frequency,EM algorithm is used to estimate the parameters of T mixture models. Lastly,the new intensity is obtained by inverse Contourlet,combining hue and saturation to get final result. Experimental results indicate that the proposed algorithm can obtain the results with more functional,spatial information and obtain a better evaluation than other mainstream algorithms.

参考文献/References:

[1] JAMES A P,DASARATHY B V. Medical image fusion:a survey of the state of the art[J]. Information fusion,2014,19(3):4-19.
[2]PAJARES G,CRUZ J M. A wavelet based image fusion tutorial[J]. Pattern recognition,2004,37(9):1 855-1 872.
[3]ZHANG Y K,HE S,CHENG Y J. Image fusion algorithm based on contourlet transform[J]. Advanced materials research,2014,1 044/1 045:1 173-1 177.
[4]SHEN Y,REN E,DANG J W,et al. Nonsubsampled contourlet transform based medical image fusion method[J]. Information technology journal,2013,12(4):749-755.
[5]ZHANG Z,BLUM R S. A categorization and study of multiscale decomposition based image fusion schemes with a performance study for a digital camera application[J]. Proceedings of the IEEE,1999,87(8):1 315-1 326.
[6]PIELLA G. A general framework for multiresolution image fusion from pixels to regions[J]. Information fusion,2003,4(4):259-280.
[7]BHATNAGAR G,WU Q M J,LIU Z. A new contrast based multimodal medical image fusion framework[J]. Neurocomputing,2015,157:143-152.
[8]SINGH R,KHARE A. Fusion of multimodal medical images using Daubechies complex wavelet transform:a multiresolution approach[J]. Information fusion,2014,19(3):49-60.
[9]DO M N,VETTERLI M. Contourlets[J]. Studies in computational mathematics,2003,10(3):83-105.
[10]DO M N,VETTERLI M. The contourlet transform:an efficient directional multiresolution image representation[J]. IEEE transactions on image processing,2005,14(12):2 091-2 106.
[11]ZHANG X. CHEN W B. Medical image fusion based on weighted Contourlet transformation coefficients[J]. Journal of image and graphics,2014,19(1):133-140.
[12]CHAN H,LIU Q X. LI H L,et al. Multimodal medical image fusion based on IHS and PCA[J]. Procedia engineering,2010,7(8):280-285.
[13]YANG J,BLUM R S. A statistical signal processing approach to image fusion for concealed weapon detection[C]//Proc of the IEEE International Conference on Image Processing. New York,2002:513-516.
[14]ZRIBI M. Unsupervised Bayesian image segmentation using orthogonal series[J]. Journal of visual communication and image representation,2007,18(6):496-503.
[15]SHOHAM S. Robust clustering by deterministic agglomeration EM of mixtures of multivariate t-distributions[J]. Pattern recognition,2002,35(5):1 127-1 142.
[16]RAFAEL C G,RICHARD E W. 数字图像处理[M]. 2版. 阮秋琦,阮宇智,译. 北京:电子工业出版社,2007:225-245.
[17]TU T M,SU S C,SHYU H C,et al. A new look at IHS-like image fusion methods[J]. Information fusion,2001,2(3):77-186.
[18]郭雷,李晖晖,鲍永生. 图像融合[M]. 北京:电子工业出版社,2008:90-95.
[19]张永生,张云彬,戴晨光. 天基多源遥感信息融合[M]. 北京:科学出版社,2005:115-127.
[20]GUO L,LIU K. Applying NSCT(nonsubsampled contourlet transform)theory to achieving effective image fusion[J]. Journal of northwestern polytechnical university,2009,27:255-259.
[21]XYDEAS C,PETROVIC V. Objective image fusion performance measure[J]. Electronics letters,2000,36(4):308-309.

备注/Memo

备注/Memo:
收稿日期:2016-08-20.
基金项目:国家自然科学基金(61402204、61572239)、镇江市科技计划项目(SH20140110)、江苏省自然科学基金(BK20130529).
通讯联系人:徐春艳,硕士研究生,研究方向:医学图像处理. E-mail:xcy742016270@163.com
更新日期/Last Update: 1900-01-01