[1]宿慧丹,戴思捷,郭各朴,等.HIFU焦域的温度分布模拟及其疗效分析[J].南京师范大学学报(自然科学版),2017,40(01):144.[doi:10.3969/j.issn.1001-4616.2017.01.021]
 Su Huidan,Dai Sijie,Guo Gepu,et al.Numerical Studies on Temperature Distribution Analysis and Treatment Efficacy Evaluation for High Intensity Focused Ultrasound Therapy[J].Journal of Nanjing Normal University(Natural Science Edition),2017,40(01):144.[doi:10.3969/j.issn.1001-4616.2017.01.021]
点击复制

HIFU焦域的温度分布模拟及其疗效分析()
分享到:

《南京师范大学学报》(自然科学版)[ISSN:1001-4616/CN:32-1239/N]

卷:
第40卷
期数:
2017年01期
页码:
144
栏目:
·物理学·
出版日期:
2017-03-31

文章信息/Info

Title:
Numerical Studies on Temperature Distribution Analysis and Treatment Efficacy Evaluation for High Intensity Focused Ultrasound Therapy
文章编号:
1001-4616(2017)01-0144-07
作者:
宿慧丹1戴思捷2郭各朴1马青玉1
(1.南京师范大学物理科学与技术学院,江苏 南京 210023)(2.南京师范大学强化培养学院,江苏 南京 210023)
Author(s):
Su Huidan1Dai Sijie2Guo Gepu1Ma Qingyu1
(1.School of Physics and Technology,Nanjing Normal University,Nanjing 210023,China)(2.Honors College,Nanjing Normal University,Nanjing 210023,China)
关键词:
HIFU治疗结构系数温度分布疗效评估
Keywords:
HIFU therapystructure coefficienttemperature distributionefficacy evaluation
分类号:
O426.2
DOI:
10.3969/j.issn.1001-4616.2017.01.021
文献标志码:
A
摘要:
高强度聚焦超声(HIFU)是一种非侵入性、对正常组织无损伤且不易引起癌细胞转移的肿瘤治疗手段,对其治疗过程中的疗效以及肿瘤周围正常组织破坏情况的监测是实现HIFU治疗剂量精准控制的关键. 本文首先从HIFU局部组织加热出发,建立了HIFU治疗系统模型,利用有限元数值模拟了HIFU焦域的声场以及温度场分布,并研究了换能器参数、超声功率、治疗时间对焦域温度分布的影响. 结果表明,随着治疗时间的增长,焦点温度上升,逐渐形成椭球状的焦域; 在达到治疗疗效时,即焦域径向±0.4 mm椭球范围内的组织温度达到了343 K(70 ℃)时,随着换能器结构系数(半径/焦距)的减小,所需要的治疗时间增长,所形成的焦域不断扩大,其轴向宽度与径向宽度比值增大,焦域变得细长,焦点处的温度逐渐降低. 本研究对已知结构系数的聚焦换能器的焦域温度场仿真,可以为HIFU治疗中的温度估计和监控提供新方法,也可为疗效评估和剂量控制提供新技术.
Abstract:
High intensity focused ultrasound(HIFU)is a non-invasive therapeutic medical treatment modality,which can destroy tumor tissues without damaging to the surrounding normal tissues and has less possibility of cancer metastasis. The key issue of accurate HIFU therapeutic dosage control is how to monitor the efficacy in the process of HIFU treatment. Based on HIFU localized tissue heating,the model of HIFU treatment is established using the finite element method(FEM),and the numerical simulations of the acoustic and temperature fields at HIFU focal region are developed. The influences of transducer parameters,acoustic power and treatment time on temperature distribution at the focal region are discovered. It is proved that,with the increasing treatment time,the ellipsoidal focal region forms gradually with a rising temperature distribution. Once reaching HIFU treatment efficacy,the temperature of the focal region(in radial±0.4 mm)reaches 343 K(70 ℃),with the decrease of the structure coefficient(radius/focal length)of the transducer,the required treatment time increases,producing a narrower ellipsoidal focal region with an enhanced ratio between the radial width and axial width. Therefore,the simulations of temperature field for the transducer with a known structure coefficient in this study provide a new method for temperature estimation,efficacy evaluation and dose control in the HIFU therapy.

参考文献/References:

[1] HUTCHINSON L. Treatment modalities:HIFU is effective for unresectable HCC[J]. Nature reviews clinical oncology,2011,8(7):385-385.
[2]KENNEDY J E. High-intensity focused ultrasound in the treatment of solid tumors[J]. Nature reviews cancer,2005,5(4):321-327.
[3]何向东,冯少彤. 高强度聚焦超声温度场的有限差分模拟[J]. 南京师大学报(自然科学版),2015,38(4):106-112.
[4]陈轩泽,马青玉,杨玲,等. 离体猪肝组织电阻抗的温度特性研究[J]. 南京师大学报(自然科学版),2012,35(2):32-38.
[5]XING Y,LU X,PUA E C,et al. The effect of high intensity focused ultrasound treatment on metastases in a murine melanoma model[J]. Biochemical and biophysical research communications,2008,375(4):645-650.
[6]CLARKE R L,TER HAAR G R. Temperature rise recorded during lesion formation by high-intensity focused ultrasound.[J]. Ultrasound in medicine and biology,1997,23(2):299-306.
[7]姜立新,胡兵. 高强度聚焦超声作用下的组织温度场测量技术的研究进展[J]. 声学技术,2006,25(1):43-47.
[8]JOLESZ F A,MCDANNOLD N. Current status and future potential of MRI-guided focused ultrasound surgery[J]. Journal of magnetic resonance imaging,2008,27(2):391-399.
[9]YE G,SMITH P P,NOBLE J A. Model-based ultrasound temperature visualization during and following Hifu exposure[J]. Ultrasound in medicine and biology,2010,36(2):234-249.
[10]QIAN Z W,YU J,FEI X,et al. Noninvasive temperature monitoring in Hifu clinical uses[J]. International symposium on therapeutic ultrasound proceedings,2007,911(1):251-257.
[11]DANIELS M J,VARGHESE T,MADSEN E L,et al. Non-invasive ultrasound-based temperature imaging for monitoring radiofrequency heating-Phantom results[J]. Physics in medicine and biology,2007,52(16):4 827-4 843.
[12]MA Y,ZHANG D,GONG XF,et al. Noninvasive temperature estimation by detecting echo-strain change including thermal expansion[J]. Chinese physics,2007,16(9):2 745-2 751.
[13]ANAND A,KACZKOWSKI P J. A model-based noninvasive temperature estimation technique for HIFU therapy monitoring using backscattered ultrasound[J]. Journal of the acoustical society of America,2004,115(5):2 490-2 490.
[14]BLACKSTOCK D T. Fundamentals of physical acoustics[M]. New York:John Wiley & Sons Inc.,2000:476-488.
[15]范庭波. 高强度聚焦超声非线性声场和组织损伤形成的扫描模式比较研究[D]. 南京:南京大学,2012.
[16]PENNES H H. Analysis of tissue and arterial blood temperatures in the resting human forearm[J]. Journal of applied physiology,1998,85(1):5-34.
[17]胡兵,姜立新,黄瑛. 用于高强度聚焦超声热消融的PAA模块:模块的制作及声学参数的测量(英文)[J]. 声学技术,2006,25(6):613-616.
[18]KREIDER W,YULDASHEV P V,SAPOZHNIKOV O A,et al. Characterization of a multi-element clinical HIFU system using acoustic holography and nonlinear modeling[J]. IEEE transactions on ultrasonics ferroelectrics and frequency control,2013,60(8):1 683-1 698.
[19]ZHANG C B,CAO H L,LI Q,et al. Enhancement effect of ultrasound-induced microbubble cavitation on branched polyethylenimine-mediated VEGF(165)transfection with varied N/P ratio.[J]. Ultrasound in medicine and biology,2013,39(1):161-171.
[20]MYERS M R,Soneson J E. Temperature modes for nonlinear Gaussian beams[J]. Journal of the acoustical society of America,2009,126(1):425-433.
[21]SONESON J E,MYERS M R. Gaussian representation of high-intensity focused ultrasound beams[J]. Journal of the acoustical society of America,2007,122(5):2 526-2 531.
[22]SONESON J E,MYERS M R. Thresholds for nonlinear effects in high-intensity focused ultrasound propagation and tissue heating[J]. IEEE transactions on ultrasonics ferroelectrics and frequency control,2010,57(11):2 450-2 459.
[23]BESSONOVA O,WILKENS V. Non-invasive estimation of temperature using diagnostic ultrasound during high intensity focused ultrasound therapy[J]. Journal of the acoustical society of America,2013,134(5):4 213-4 213.
[24]CHEN T,FAN T,ZHANG W,et al. Acoustic characterization of high intensity focused ultrasound fields generated from a transmitter with a large aperture[J]. Journal of applied physics,2014,115(11):114 902-1-114 902-7.

备注/Memo

备注/Memo:
收稿日期:2016-09-29.
基金项目:国家自然科学基金(11604156、11474166)、江苏省自然科学基金(BK20161013)、中国博士后科学基金(2016M591874)、江苏高校优势学科建设项目.
通讯联系人:马青玉,博士,教授,研究方向:电子技术、信息处理和声学. E-mail:maqingyu@njnu.edu.cn
更新日期/Last Update: 1900-01-01