[1]田守静,尹斌芳,齐龙兴.考虑多个避难所中的捕食-食饵快慢动力学分析[J].南京师范大学学报(自然科学版),2017,40(03):29.[doi:10.3969/j.issn.1001-4616.2017.03.005]
 Tian Shoujing,Yin Binfang,Qi Longxing.Fast and Slow Predator-Prey Dynamics with Multiple Refuges[J].Journal of Nanjing Normal University(Natural Science Edition),2017,40(03):29.[doi:10.3969/j.issn.1001-4616.2017.03.005]
点击复制

考虑多个避难所中的捕食-食饵快慢动力学分析()
分享到:

《南京师范大学学报》(自然科学版)[ISSN:1001-4616/CN:32-1239/N]

卷:
第40卷
期数:
2017年03期
页码:
29
栏目:
·数学·
出版日期:
2017-09-30

文章信息/Info

Title:
Fast and Slow Predator-Prey Dynamics with Multiple Refuges
文章编号:
1001-4616(2017)03-0029-09
作者:
田守静尹斌芳齐龙兴
安徽大学数学科学学院,安徽 合肥 230601
Author(s):
Tian ShoujingYin BinfangQi Longxing
School of Mathematical Sciences,Anhui University,Hefei 230601,China
关键词:
捕食-食饵模型多个避难所快慢系统迁移Hopf分支
Keywords:
predator-prey modelmultiple refugesfast-slow systemmigrationHopf bifurcation
分类号:
O175
DOI:
10.3969/j.issn.1001-4616.2017.03.005
文献标志码:
A
摘要:
基于实际生态现象,考虑被捕食者会有多个避难所的情形,建立了一个多个避难所的捕食-食饵模型. 基于不同的时间尺度,运用奇异摄动理论分析慢系统的动力学行为. 稳定性分析得出当阈值条件大于1时,会有Hopf分支现象出现. 结果表明,避难所的添加可能会导致系统失去稳定性. 另外,对被捕食者有一个避难所和多个避难所这两种情况进行了比较,发现被捕食者在公开区域和避难所之间的移动,以及避难所的大小也会影响捕食-食饵动力学性态.
Abstract:
In this paper we established a predator-prey model with multiple refuges for prey. Based on two different time scales,applying the singular perturbation techniques we analyse the dynamics on the slow system. The stability analyses are performed and Hopf bifurcation occurs when the threshold condition is greater than one value. It is shown that adding refuges for prey may lead to stability lost. Furthermore,the case of one refuge and multiple refuges are compared. It is found that the migration of prey among patches affects the dynamics of predator-prey system. The effect of the migration between open habitat and refuges is stronger than that of the migration among refuges for prey. The refuge size also infects the dynamics of predator-prey system.

参考文献/References:

[1] ROSIER R L,LANGKILDE T. Behavior under risk:how animals avoid becoming dinner[J]. Nature education knowledge,2012,2:1-8.
[2]GREENE H W. Antipredator mechanisms in reptiles[M]. New York:John Wiley and Sons,1988:1-152.
[3]MARTIN J,LOPEZ P. When to come out from a refuge:risk-sensitive and state-dependent decisions in an alpine lizard[J]. Behavioral ecology,1999,10:487-492.
[4]HEMMI J M,PFEIL A. A multi-stage anti-predator response increases information on predation risk[J]. Journal of experimental biology,2010,213:1 484-1 489.
[5]REEBS S G. How fishes try to avoid predators[J/OL]. 2008:1-12. www.howfishbehave.ca.
[6]EMSENS W J,HIRSCH B T,KAYS R. Prey refuges as predator hotspots:ocelot(Leopardus pardalis)attraction to agouti(Dasyprocta punctata)dens[J]. Acta theriologica,2014,59(2):257-262.
[7]FENG Z L,YI Y F,ZHU H P. Fast and slow dynamics of malaria and the s-gene frequency[J]. Journal of dynamics and differential equations,2004,16:869-895.
[8]AUGER P,PARRA R B,POGGIALE J C,et al. Aggregation of variable and application to population dynamics[M]. Berlin Heidelberg:Springer,2008:209-263.
[9]DOANH N,TRI N,PIERRE A. Effects of refuges and density dependent dispersal on interspecific competition dynamics[J]. International journal of bifurcation and chaos,2012,22(2):221-234.
[10]JANA S,CHAKRABORTY M,CHAKRABORTY K,et al. Global stability and bifurcation of time delayed prey-predator system incorporating prey refuge[J]. Mathematics and computers in simulation,2012,85(3):57-77.
[11]QI L X,GAN L J,XUE M,et al. Predator-prey dynamics with Allee effect in prey refuge[J]. Advances in difference equations,2015,340:1-12.
[12]BIRKELAND C,DAYTON P K,ENGSTROM N A. A stable system of predation on a holothurians by four asteroids and their top predator[J]. Australian museum memoir,1982,16:175-189.

备注/Memo

备注/Memo:
收稿日期:2017-02-19.
基金项目:国家自然科学基金(11401002)、安徽省自然科学基金(1208085QA15).
通讯联系人:齐龙兴,副教授,研究方向:生物数学. E-mail:qilx@ahu.edu.cn
更新日期/Last Update: 2017-09-30