[1]李二超,王慧莹,杨秀平,等.动态障碍物环境下移动机器人的全局路径规划研究[J].南京师范大学学报(自然科学版),2017,40(03):52.[doi:10.3969/j.issn.1001-4616.2017.03.008]
 Li Erchao,Wang Huiying,Yang Xiuping,et al.Research on Global Path Planning of Mobile Robotin Dynamic Obstacle Environment[J].Journal of Nanjing Normal University(Natural Science Edition),2017,40(03):52.[doi:10.3969/j.issn.1001-4616.2017.03.008]
点击复制

动态障碍物环境下移动机器人的全局路径规划研究()
分享到:

《南京师范大学学报》(自然科学版)[ISSN:1001-4616/CN:32-1239/N]

卷:
第40卷
期数:
2017年03期
页码:
52
栏目:
·计算机科学·
出版日期:
2017-09-30

文章信息/Info

Title:
Research on Global Path Planning of Mobile Robotin Dynamic Obstacle Environment
文章编号:
1001-4616(2017)03-0052-07
作者:
李二超1王慧莹1杨秀平2梁 波1
(1.兰州理工大学电气工程与信息工程学院,甘肃 兰州 730050)(2.兰州理工大学经济管理学院,甘肃 兰州 730050)
Author(s):
Li Erchao1Wang Huiying1Yang Xiuping2Liang Bo1
(1.College of Electrical and Information Engineering,Lanzhou University of Technology,Lanzhou 730050,China)(2.College of Economy and Management,Lanzhou University of Technology,Lanzhou 730050,China)
关键词:
移动机器人路径规划动态障碍物NSGA-Ⅱ算法
Keywords:
mobile robotpath planningdynamic obstaclesNSGA-Ⅱ algorithm
分类号:
TP273
DOI:
10.3969/j.issn.1001-4616.2017.03.008
文献标志码:
A
摘要:
针对环境中存在动态障碍物时,如何运用全局路径规划算法求解移动机器人的最佳路径,设定动态障碍物的运动范围是已知的,则危险程度是一个区间数. 定义一种Pareto概率支配公式,求出不同区间数之间的占优概率,由此得出哪条路径的安全程度更高. 对传统NSGA-Ⅱ算法进行改进,根据约束函数把所有的解区分为可行解与非可行解,引入非可行解储备集储存好的非可行解,引导可行解进化出更好的解. 建立环境模型,用Matlab软件进行仿真,仿真结果表明对不同的障碍物环境,该方法均能规划出安全无碰的路径,与传统算法进行对比,改进后算法在求解动态障碍物环境下的机器人路径规划问题更加可行有效.
Abstract:
For the dynamic obstacles in the environment,how to use the global path planning algorithm to solve the optimal path of mobile robot,assuming that the motion range of the dynamic obstacle is known,so the hazard level is an interval number. Define a Pareto probability dominance formula,find out the dominant probability between different interval numbers,which can be used to determine which path is more secure. The traditional NSGA-Ⅱ algorithm is improved,and all solutions are classified into feasible and infeasible solutions according to the constraint function,the non feasible solution set is introduced to store the non feasible solution,guide feasible solutions to evolve better solutions. The environment model is established and simulated with MATLAB software. The simulation results show that for different obstacle environment,this method can be used to plan a safe path,compared with the traditional algorithm,the improved algorithm in solving the dynamic obstacle environment for robot path planning problem is more feasible and effective.

参考文献/References:

[1] 周毅. 基于遗传算法的移动机器人路径规划研究[D].保定: 河北工业大学,2015.
[2]侯占军. 移动机器人自主避障方法的研究[D]. 北京:北京工业大学,2008.
[3]TANG B,ZHU Z,LUO J. Hybridizing particle swarm optimization and differential evolution for the mobile robot global path planning[J]. International journal of advanced robotic systems,2016,13(3):1-2.
[4]孙波,陈卫东,席裕庚. 基于粒子群优化算法的移动机器人全局路径规划[J]. 控制与决策,2005,20(9):1 052-1 055.
[5]陈智. 基于栅格法多目标路径规划研究[D]. 武汉:华中科技大学,2015.
[6]QU H,XING K,ALEXANDER T. An improved genetic algorithm with co-evolutionary strategy for global path planning of multiple mobile robots[J]. Neurocomputing,2013,120(10):509-517.
[7]吴青松. 基于遗传算法的移动机器人路径规划研究[D]. 成都:电子科技大学,2005.
[8]张勇,巩敦卫,任永强,等. 用于约束优化的简洁多目标微粒群优化算法[J]. 电子学报,2011,39(6):1 436-1 440.
[9]张勇. 区间多目标优化问题的微粒群优化理论及应用[D]. 徐州:中国矿业大学,2009.
[10]申晓宁,郭毓,陈庆伟,等. 多目标遗传算法在机器人路径规划中的应用[J]. 南京理工大学学报(自然科学版),2006,30(6):659-663.
[11]公茂果,焦李成,杨咚咚,等. 进化多目标优化算法研究[J]. 软件学报,2009,20(2):271-289.
[12]王明昭,王宇平,王晓丽,等. 一种均匀聚集距离的改进NSGA-Ⅱ算法[J]. 西安电子科技大学学报(自然科学版),2016,43(3):49-54.
[13]DEB K,AGRAWAL S,PRATAP A,et al. A fast elitist non-dominated sorting genetic algorithm for multi-objective optimization:NSGA-Ⅱ[J]. Lecture notes in computer science,2002,1917:849-858.
[14]陈婕,熊盛武,林婉如,等. NSGA-Ⅱ算法的改进策略研究[J]. 计算机工程与应用,2011,47(19):42-45.
[15]AHMED F,DEB K. Multi-objective optimal path planning using elitist non-dominated sorting genetic algorithms[J]. Soft computing,2013,17(7):1283-1299,.
[16]DEB K,JAIN H. An evolutionary many-objective optimization algorithm using reference-point based non-dominated sorting approach,part ii:handling constraints and extending to an adaptive approach[J]. IEEE transactions on evolutionary computation,2014,18(4):602-622.

相似文献/References:

[1]屈正庚,杨 川.基于改进蚁群算法的移动机器人全局轨迹规划研究[J].南京师范大学学报(自然科学版),2015,38(01):81.
 Qu Zhenggeng,Yang Chuan.Research on Global Path Planning for Mobile Robot Based onImproved Ant Colony Optimization Algorithm[J].Journal of Nanjing Normal University(Natural Science Edition),2015,38(03):81.
[2]陈祥章.基于单目视觉的机器人人工势场法路径规划研究[J].南京师范大学学报(自然科学版),2014,37(01):61.
 Chen Xiangzhang.Study on Artificial Potential Field Path Planning of Robot Based on Monocular Vision[J].Journal of Nanjing Normal University(Natural Science Edition),2014,37(03):61.

备注/Memo

备注/Memo:
收稿日期:2017-03-18.
基金项目:国家自然科学基金(61403175、41501597).
通讯联系人:李二超,博士,副教授,研究方向:多目标优化、机器人控制. E-mail:lecstarr@163.com
更新日期/Last Update: 2017-09-30