参考文献/References:
[1] HUANG G B,ZHU Q Y,SIEW C K. Extreme learning machine:a new learning scheme of feedforward neural networks[C]//Proceedings of International Joint Conference on Neural Networks(IJCNN2004),vol. 2,Budapest,Hungary,25-29 July,2004:985-990.
[2]HUANG G B,CHEN L,SIEW C K. Universal approximation using incremental constructive feedforward networks with random hidden nodes[J]. IEEE transactions on neural networks,2006,17(4):879-892.
[3]MOHAMMED A A,MINHAS R,JONATHAN Q M,et al. Human face recognition based on multidimensional PCA and extreme learning machine[J]. Pattern recognition,2011,44(10/11):2 588-2 597.
[4]CHACKO B P,VIMAL V R V,RAJU G,et al. Handwritten character recognition using wavelet energy and extreme learning machine[J]. International journal of machine learning and cybernetics,2012,3(2):149-161.
[5]张弦,王宏力. 基于贯序正则极端学习机的时间序列预测及其应用[J]. 航空学报,2011,32(7):1 302-1 308.
[6]YANG H,THOMAS P,OLGA F. Fault detection based on signal reconstruction with auto-associative extreme learning machines[J]. Engineering applications of artificial intelligence,2017,57:105-117.
[7]ZHU H,TSANG E C,WANG X Z,et al. Monotonic classification extreme learning machine[J]. Neurocomputing,2017,225:205-213.
[8]CHEN Y L,WU W. Mapping mineral prospectivity using an extreme learning machine regression[J]. Ore geology reviews,2017,80:200-213.
[9]XU S,WANG J. A fast incremental extreme learning machine algorithm for data streams classification[J]. Expert systems with applications,2016,65:332-344.
[10]ANAM K,AL-JUMAILY A. Evaluation of extreme learning machine for classification of individual and combined finger movements using electromyography on amputees and non-amputees[J]. Neural networks,2017,85:51-68.
[11]IOSIFIDIS A,TEFAS A,PITAS I. Approximate kernel extreme learning machine for large scale data classification[J]. Neurocomputing,2017,219:210-220.
[12]裘日辉,刘康玲,谭海龙,等. 基于极限学习机的分类算法及在故障识别中的应用[J]. 浙江大学学报(工学版),2016,50(10):1 965-1 972.
[13]HUANG G B,CHEN L,SIEW C K. Universal approximation using incremental constructive feedforward networks with random hidden nodes[J]. IEEE transactions on neural networks,2006,17(4):879-892.
[14]HUANG G B,LI M B,CHEN L,et al. Incremental extreme learning machine with fully complex hidden nodes[J]. Neurocomputing,2008,71(4/5/6):576-583.
[15]RONG H J,ONG Y S,TAN A H,et al. A fast pruned-extreme learning machine for classification problem[J]. Neurocomputing,2008,72(1/2/3):359-366.
[16]AKAIKE H. Information theory and an extension of the maximum likelihood principle[C]//Second International Symposium on Information Theory. Budapest:Academiai Kiado,1992:267-281.
[17]ZHAI J H,SHAO Q Y,WANG X Z. Improvements for P-ELM1 and P-ELM2 pruning algorithms in extreme learning machines[J]. International journal of uncertainty,fuzziness and knowledge-based systems,2016,24(3):327-345.
[18]ZHAI J H,SHAO Q Y,WANG X Z. Architecture selection of ELM networks based on sensitivity of hidden nodes[J]. Neural processing letters,2016,44(2):1-19.
[19]MICHE Y,SORJAMAA A,BAS P,et al. OP-ELM:optimally pruned extreme learning machine[J]. IEEE transactions on neural networks,2010,21(1):158-162.
[20]HINTON G E,SRIVASTAVA N,KRIZHEVSKY A,et al. Improving neural networks by preventing co-adaptation of feature detectors[DB/OL]. https://arxiv.org/abs/1207.0580,2012.
[21]SRIVASTAVA N,HINTON G,KRIZHEVSKY A,et al. Dropout:a simple way to prevent neural networks from overfitting[J]. Journal of machine learning research,2014,15(1):1 929-1 958.
[22]BALDI P,SADOWSKI P. The dropout learning algorithm[J]. Artificial intelligence,2014,210(210):78-122.
[23]WAGER S,WANG S,LIANG P. Dropout training as adaptive regularization[C]//Advances in Neural Information Processing Systems,Laka Tahoe,Nevada,2013:351-359.
[24]IOSIFIDIS A,TEFAS A,PITAS I. DropELM:fast neural network regularization with dropout and drop connect[J]. Neurocomputing,2015,162:57-66.
[25]BA L J,FREY B. Adaptive dropout for training deep neural networks[C]//Advances in Neural Information Processing Systems,Laka Tahoe,Nevada,2013.
[26]LI Z,GONG B,YANG T. Improved dropout for shallow and deep learning[C]//Advances in Neural Information Processing Systems,Barcelona,Spain,2016:1-10.
[27]YANG W,JIN L,TAO D,et al. Drop sample:a new training method to enhance deep convolutional neural networks for large-scale unconstrained handwritten Chinese character recognition[J]. Pattern recognition,2016,58:190-203.
[28]KLEIN E B,STONE W N,HICKS M W,et al. Understanding Dropouts[J]. Advances in neural information processing systems,2013,26(2):89-100.
[29]FRANK A,ASUNCION A. UCI machine learning repository[DB/OL]. [http://archive.ics.uci.edu/ml],2013.