[1]俞清云,陶永春.狭窄的二维拓扑绝缘体超导结中新奇的0-π态转变[J].南京师范大学学报(自然科学版),2017,40(03):87.[doi:10.3969/j.issn.1001-4616.2017.03.013]
 Yu Qingyun,Tao Yongchun.Novel 0-π State Transitions in a Superconducting NarrowTwo-Dimensional Topological Insulator Junction[J].Journal of Nanjing Normal University(Natural Science Edition),2017,40(03):87.[doi:10.3969/j.issn.1001-4616.2017.03.013]
点击复制

狭窄的二维拓扑绝缘体超导结中新奇的0-π态转变()
分享到:

《南京师范大学学报》(自然科学版)[ISSN:1001-4616/CN:32-1239/N]

卷:
第40卷
期数:
2017年03期
页码:
87
栏目:
·物理学·
出版日期:
2017-09-30

文章信息/Info

Title:
Novel 0-π State Transitions in a Superconducting NarrowTwo-Dimensional Topological Insulator Junction
文章编号:
1001-4616(2017)03-0087-07
作者:
俞清云陶永春
南京师范大学物理科学与技术学院,江苏 南京 210023
Author(s):
Yu QingyunTao Yongchun
School of Physics and Technology,Nanjing Normal University,Nanjing 210023,China
关键词:
狭窄的二维拓扑绝缘体边间耦合Josephson结0-π态转变
Keywords:
narrow two-dimensional topological insulatorinteredge couplingJosephson junction0-π state transition
分类号:
O469; O511+.9
DOI:
10.3969/j.issn.1001-4616.2017.03.013
文献标志码:
A
摘要:
边间耦合引起的边间背散射是赋予狭窄的二维拓扑绝缘体的重要特性,能够大大地丰富拓扑超导电子学. 本文在考虑边间耦合的情况下,使用基于Bogoliubov-de Gennes(BdG)方程的理论方法,研究了由狭窄的二维拓扑绝缘体构成的Josephson结,其中两个相距长度为d的超导电极置于同一边上. 结果发现,通过改变d总可以导致0态转变,同时这0态转变能反过来证明边缘态螺旋性的自旋结构. 引起这个新奇的结果的机制源于边间背散射引诱了一个额外的π相移,不同于由两个超导电极间铁磁体夹层厚度变化所引起的传统的0态转变. 此外,在0态转变点处存在相当大的Josephson临界电流残余值. 因此,这些结果在超导电子学器件的设计中具有潜在的应用价值,譬如,高性能的超流开关.
Abstract:
The narrow two-dimensional topological insulator is characterized by the interedge backscattering originating from interedge coupling,which could greatly enrich topological superconducting electronics. Here,considering the interedge coupling,we apply Bogoliubov-de Gennes(BdG)equation to study the Josephson junction composed of a narrow two-dimensional topological insulator strip,where two superconducting electrodes at a distance of d are placed on the same edge of the strip. It is found that varying d could give rise to a 0-π state transition,which in turn can manifest the helical spin texture of the edge states. The mechanism stems from an additional π phase shift caused by the interedge backscattering,being different from the conventional one induced by the length of the ferromagnet sandwiched between two superconducting electrodes. Moreover,an unusually large residual value of the Josephson critical current at the 0-π state transition point is always exhibited. As a result,the results have potential applications in the designs of superconducting electronic devices,for instance,a supercurrent switch with a very efficient performance.

参考文献/References:

[1] HASAN M Z,KANE C L. Colloquium:topological insulator[J]. Reviews of modern physics,2010,82(4):3 045-3 067.
[2]QI X L,ZHANG S C. Topological insulators and superconductors[J]. Reviews of modern physics,2011,83(4):1 057-1 110.
[3]K?NIG M,WIEDMANN S,BRUNE C,et al. Quantum spin Hall insulator state in HgTe quantum wells[J]. Science,2007,318:766-770.
[4]ROTH A,BRUNE C,BUHMANN H,et al. Nonlocal transport in the quantum spin Hall state[J]. Science,2009,325(5938):294-297.
[5]WU C,BERNEVIG B A,ZHANG S C. Helical liquid and the edge of quantum spin Hall systems[J]. Physical review letters,2006,96(10):106401-1-106401-4.
[6]BRüNE C,ROTH A,BUHMANN H,et al. Spin polarization of the quantum spin Hall edge states[J]. Nature physics,2012,8:485-490.
[7]CHEN W,DENG W Y,HOU J M,et al. π spin Berry phase in a quantum spin Hall insulator based interferometer:evidence for the Helical spin texture of the edge states[J]. Physical review letters,2016,117(7):076802-1-076802-6.
[8]HART S,REN H,WAGNER T,et al. Induced superconductivity in the quantum spin Hall edge[J]. Nature physics,2014,10:638-643.
[9]PRIBIAG V S,BEUKMAN A J A,QU F,et al. Edge-mode superconductivity in a two-dimensional topological insulator[J]. Nature nanotechnology,2015,10:593-597.
[10]ZHOU B,LU H Z,CHU R L,et al. Finite size effects on helical edge states in a quantum spin Hall system[J]. Physical review letters,2008,101(24):246807-1-246807-4.
[11]LI W,ZANG J D,JIANG Y J. Size effects on transport properties in topological Anderson insulators[J]. Physical review b,2011,84(3):033409-1-033409-4.
[12]MOOIJ J E,ORLANDO T P,LEVITOV L,et al. Josephson persistent-current qubit[J]. Science,1999,285:1 036-1 039.
[13]MAKHLIN Y,SCH?N G,SHNIRMAN A. Quantum-state engineering with Josephson-junction devices[J]. Reviews of modern physics,2001,73(2):357-400.
[14]GOLUBOV A A,KUPRIYANOV M Y,LL’ICHEV E. The current-phase relation in Josephson junctions[J]. Reviews of modern physics,2004,76(2):411-469.
[15]BUZDIN A I. Proximity effects in superconductor-ferromagnet heterostructures[J]. Reviews of modern physics,2005,77(3):935-976.
[16]BERGERET F S,VOLKOV A F,EFETOV K B. Odd triplet superconductivity and related phenomena in superconductor-ferromagnet structures[J]. Reviews of modern physics,2005,77(4):1 321-1 373.
[17]LINDER J,YOKOYAMA T,HERNANDO D H,et al. Supercurrent switch in graphene π junctions[J]. Physical review letters,2008,100(18):187004-1-187004-4.
[18]WANG J,YANG Y H,CHAN K S. Josephson π state induced by valley polarization[J]. Physical review b,2014,89(6):064501-1-064501-5.
[19]RYAZANOV V V,OBOZNOV V A,RUSANOV A YU,et al. Coupling of two superconductors through a ferromagnet:evidence for a π junction[J]. Physical review letters,2001,86(11):2 427-2 430.
[20]KONTOS T,APRILI M,LESUEUR J,et al. Josephson junction through a thin ferromagnetic layer:negative coupling[J]. Physical review letters,2002,89(13):137007-1-137007-4.
[21]BLUM Y,TSUKERNIK A,KARPOVSKI M,et al. Oscillations of the superconducting critical current in Nb-Cu-Ni-Cu-Nb junctions[J]. Physical review letters,2002,89(18):187004-1-187004-4.
[22]WEIDES M,KEMMLER M,GOLDOBIN E,et al. High quality ferromagnetic 0 and π Josephson tunnel junctions[J]. Applied physics letters,2006,89(12):122511-1-122511-3.
[23]FU L,KANE C L. Superconducting proximity effect and Majorana fermions at the surface of a topological insulator[J]. Physical review letters,2008,100(9):096407-1-096407-4.
[24]AKHMEROV A R,NILSSON J,BEENAKKER C W J. Electrically detected interferometry of Majorana fermions in a topological insulator[J]. Physical review letters,2009,102(21):216404-1-216404-4.
[25]TANAKA Y,YOKOYAMA T,NAGAOSA N. Manipulation of the Majorana fermion,Andreev reflection,and Josephson current on topological insulators[J]. Physical review letters,2009,103(10):107002-1-107002-4.
[26]SUN Q F,LI Y X,LONG W,et al. Quantum Andreev effect in two-dimensional HgTe/CdTe quantum well/superconductor systems[J]. Physical review b,2011,83(11):115315-1-115315-5.
[27]ZYUZIN A,ALIDOUST M,KLINOVAJA J,et al. Supercurrent reversal in two-dimensional topological insulators[J]. Physical review b,2015,92(17):174515-1-174515-6.
[28]ADROGUER P,GRENIER C,CARPENTIER D,et al. Probing the helical edge states of a topological insulator by Cooper-pair injection[J]. Physical review b,2010,82(8):081303-1-081303-4.
[29]BLACK-SCHAFFER A M. Self-consistent superconducting proximity effect at the quantum spin Hall edge[J]. Physical review b,2011,83(6):060504-1-060504-4.
[30]STANESCU T D,SAU J D,LUTCHYN R M,et al. Proximity effect at the superconductor-topological insulator interface[J]. Physical review b,2010,81(24):241310-1-241310-4.
[31]CHEN W,SHEN R,SHENG L,et al. Resonant nonlocal Andreev reflection in a narrow quantum spin Hall system[J]. Physical review b,2011,84(11):115420-1-115420-6.
[32]de GENNES P G. Superconductivity of Metals and Alloys[M]. New York:Benjamin Press,1966:137-159.
[33]FURUSAKI A,TSUKADA M. DC Josephson effect and andreev reflection[J]. Solid state communications,1991,78(4):299-302.
[34]OLUND C T,ZHAO E. Current-phase relation for Josephson effect through helical metal[J]. Physical review b,2012,86(21):214515-1-214515-7.

备注/Memo

备注/Memo:
收稿日期:2017-02-27.
基金项目:江苏省普通高校研究生科研创新计划项目(KYLX16_1266).
通讯联系人:陶永春,教授,研究方向:拓扑超导自旋电子学. E-mail:taoyongchun@njnu.edu.cn
更新日期/Last Update: 2017-09-30